Abstract:
An input device including a scroll wheel assembly for moving an image in multiple directions on a display screen. The scroll wheel assembly may include a finger-engagable control member that may be endlessly rotated about a rotation axis and a tilt sensor containing a tilt contact member coplanar with the finger-engagable control member and oriented in a substantially vertical, downward orientation such that pivoting of the finger-engagable control member may move the tilt contact member laterally to contact laterally disposed contact switches. In another example, the finger-engagable control member contains a flexible blade at an underside for biasing the scroll wheel assembly to an upright position.
Abstract:
In embodiments of a transparent display backlight assembly, a backlight panel is operable as a transparent panel, and a light source generates light that the backlight panel directs from the light source to illuminate a display panel of a display device. Light refraction features refract and scatter the light, where the light refraction features are spaced for approximate transparency of the backlight panel and to illuminate the display panel. An active diffuser can be implemented as an additional transparent panel and operable for activation to diffuse the light from the backlight panel that illuminates the display panel.
Abstract:
In embodiments of a flexible display flexure assembly, a flexure assembly includes a structure of pivotable links that couples first and second housing parts of a foldable electronic device. The first housing part of the foldable electronic device includes a flexible display, and the first housing part is integrated with a first section of the flexible display. The second housing part of the foldable electronic device is integrated with a second section of the flexible display. The pivotable links are implemented to collapse relative to each other to form a bend radius of the flexible display and support the flexible display in a closed position of the foldable electronic device. The structure of the pivotable links is also implemented to support the flexible display in an open position of the foldable electronic device.
Abstract:
Embodiments are disclosed herein that relate to compact optical systems for incorporation into near-eye display devices. One disclosed embodiment provides a near-eye display system comprising a light source, a first polarizing beam splitting surface configured to receive light from the light source, a mirror configured to reflect light passed by the first polarizing beam splitting surface, and a quarter wave plate positioned between the first polarizing beam splitting surface and the mirror. The near-eye display system further includes a second polarizing beam splitting surface positioned at an angle relative to the first polarizing beam splitting surface and a microdisplay configured to produce an image via light received from the second polarizing beam splitting surface.
Abstract:
In embodiments of a flexible display foldable assembly, a foldable assembly includes first flanges integrated in a first housing part of a foldable electronic device. The foldable electronic device includes a flexible display, and the first housing part is integrated with a first section of the flexible display. The foldable assembly also includes second flanges integrated in a second housing part of the foldable electronic device, and the second housing part is integrated with a second section of the flexible display. The second flanges are implemented to fold-interlock with the first flanges to form a bend radius of the flexible display around the first and second flanges in a closed position of the foldable electronic device. The first and second flanges are also implemented to support the flexible display in the closed position of the foldable electronic device.
Abstract:
Architecture for managing clutch height in an optical navigational device such as a computer mouse. In one embodiment for a mouse, a feature can be molded into the bottom case that limits clutch height by occluding the reflected light to the image sensor when the device is lifted from the tracking surface. Tracking is disabled when clutch height threshold is exceeded, and re-enabled when device is brought under the distance clutch height threshold. The device includes firmware controlled algorithm adjustments to one or more correlation parameters. When employing a D-shaped aperture, a threshold can be placed on the z-axis height tracking distance using dimensional characteristics of the shaped aperture, such as a knife-edge (the straight portion of the "D" shaped aperture), to impose a shadow across the image sensor. The aperture can be custom designed to occlude a portion of the emitted light from an LED.
Abstract:
Architecture for managing clutch height in an optical navigational device such as a computer mouse. In one embodiment for a mouse, a feature can be molded into the bottom case that limits the clutch height by occluding the reflected light to the image sensor when the device is lifted from the tracking surface. Tracking is disabled when the clutch height threshold is exceeded, and re-enabled when the device is brought under the distance clutch height threshold. The device includes firmware controlled algorithm adjustments to one or more correlation parameters. When employing a D-shaped aperture, a threshold can be placed on the z-axis height tracking distance using dimensional characteristics of the shaped aperture, such as a knife-edge (the straight portion of the "D" shaped aperture), to impose a shadow across the image sensor. The aperture can be custom designed to occlude a portion of the emitted light from an LED.
Abstract:
In embodiments of a flexible display flexure assembly, a flexure assembly includes a structure of pivotable links that couples first and second housing parts of a foldable electronic device. The first housing part of the foldable electronic device includes a flexible display, and the first housing part is integrated with a first section of the flexible display. The second housing part of the foldable electronic device is integrated with a second section of the flexible display. The pivotable links are implemented to collapse relative to each other to form a bend radius of the flexible display and support the flexible display in a closed position of the foldable electronic device. The structure of the pivotable links is also implemented to support the flexible display in an open position of the foldable electronic device.