Abstract:
Techniques for configuring a commodity server to host virtual hard disks are disclosed herein. In an exemplary embodiment, a virtual hard disk file can be split into a plurality of differencing VHD files and one or more of the files can be downloaded to a virtualization host as it runs off the VHD files stored on the server. After the one or more VHD files are downloaded, the virtualization host can be configured to use the local copy instead of the copy on the commodity server. In addition to the foregoing, other techniques are described in the claims, the detailed description, and the figures.
Abstract:
Described are techniques for providing an application program interface that leverages the terminal services session broker infrastructure to support third party plug-in applications. In a typical scenario, when a user requests for a connection to access third party plug-in applications, the application program interface may override the session broker logic and interacts with the session broker process to identify sessions or suitable servers to which the user can be connected. The user may access the third party plug-in applications through the identified sessions or suitable servers.
Abstract:
An integration system is disclosed that provides a virtual desktop integration with terminal services. A client computer is connected to one the virtual desktops operating in a server. The client computer examines information contained in a remote desktop protocol (RDP) compliant packet supplied by the server. The client computer connects to one of the many virtual desktops based on information. Use of the information enables integration of the virtual desktop with the existing terminal session deployment model. Client devices can establish a session using a single network name and can be appropriately directed to either a virtual desktop or terminal session.
Abstract:
Techniques for configuring and operating a virtual desktop session are disclosed herein. In an exemplary embodiment, an inter-partition communication channel can be established between a virtualization platform and a virtual machine. The inter-partition communication channel can be used to configure a guest operating system to conduct virtual desktop sessions and manage running virtual desktop sessions. In addition to the foregoing, other techniques are described in the claims, the detailed description, and the figures.
Abstract:
A session-specific policy may be used to define specific configuration and operational characteristics of different types of sessions. One type of session may have one set of characteristics while a second type of session may have a different set of characteristics. The policy may be applied by a server or client, and may be propagated through an enterprise by a policy distribution management system to establish policies across multiple devices. Different session types include sessions from a local console, a remote user, a device-initiated session, a service-initiated session, and other types. Within each session type, policies may be defined for specific instances of each type. For example, different policies may be defined for different devices in a device-initiated policy.
Abstract:
Techniques are disclosed for enabling a system service executing in an isolated session to access system resources (such as a graphics processing unit) that it is isolated from. In an embodiment, the system service creates a "worker" session that is not isolated, and a "worker" process inside that worker session. Then, the system service is able to access the system resource that it is directly isolated from accessing by passing a request to the worker process to access the system resource on the system service's behalf. The worker process does so, and passes a result to the system service.
Abstract:
Automated application modeling for application virtualization (auto-modeling) may be incorporated into an application installer and/or other suitable component of a computer operating system. Auto-modeling may be performed by an auto-modeling agent. The auto-modeling agent may employ one or more of multiple auto-modeling strategies. The auto-modeling agent may assess one or more of a particular application, application installation package and/or application environment in order to determine a suitable auto-modeling strategy. Auto-modeling strategies may include active auto-modeling and passive auto-modeling. Active auto-modeling strategies may require at least partial installation and/or execution of the application to be modeled, whereas passive auto-modeling may generate corresponding auto-modeling data independent of application installation and/or execution, for example, by obtaining suitable data from a corresponding application installation package.