Abstract:
A context dependent computing device. The computing device configures itself for operations based on its context. The computing device may determine its context by reading a value from a tag using low power transmissions such that receiving a value from the tag provides an indication of proximity to a location where the tag is affixed. The value read provides an indication of a desired operation. In response to reading a value of a tag, the computing device may identify an application to launch, identify devices with which to pair or take other actions that configure the computing device for its context.
Abstract:
A cellular communication system in which overload of a base station is averted by offering users the option to communicate using a spectrum outside of the spectrum allocated for cellular communication. Incentives are offered to connect to the base station using the alternative spectrum, which may not support communications at the same rate as could be supported using the spectrum allocated to the base station for cellular communications. Users may be selected to receive an offer to receive incentives based on range to the base station, with users closer to the base station being more likely to receive such an offer. The cellular communications system may be a 3G wireless system and the alternative spectrum may be white space in the digital TV spectrum.
Abstract:
Techniques for connection information for inter-device wireless data communication are described. In at least some embodiments, a broker device maintains wireless connection information for various wireless devices. The wireless connection information includes wireless channels at which particular wireless devices can be accessed. The broker device can provide the wireless connection information to various other devices to enable wireless communication with the wireless devices.
Abstract:
Techniques for sub-channel detection for wireless data communication are described. In at least some implementations, techniques can utilize subsets of available wireless channels for inter-device data communication. For instance, in at least some embodiments, a wireless connection between a client device and a wireless device can be established according to a pre-specified subset of sub-channels. Further, in at least some embodiments, a wireless device can be configured to transmit and/or receive data using a specific subset of sub-channels, while a client device can be configured to scan a larger set of sub-channels to search for data communication from the wireless device. The client device can detect transmitted signal from the wireless device at the subset of sub-channels, and can utilize the set of sub-channels for data communication between the wireless device and the client device.
Abstract:
Technologies are generally described for providing location information associated with users for emergency service purposes. User location through a wireless communication device may be determined upon triggering by a user initiated emergency communication (in various modalities) or by an external trigger signal employing one or more known signal sources and provided to an emergency service provider. The user location may also be determined / updated periodically and refined upon triggering of the emergency communication. Communication between the user's wireless device and the emergency service provider may be prioritized, in some examples, to ensure reliable communication.
Abstract:
Techniques for wireless access point mapping are described. In at least some embodiments, various characteristics of a wireless access point are detected. Examples of such characteristics include signal strength for wireless signal transmitted by the wireless access point, identifying information for the wireless access point, data error rates for data transmitted by the wireless access point, and so forth. Characteristics of a wireless access point can be detected at multiple different geographic locations to enable a reception range mapping to be generated for the wireless access point, e.g., for an area in which signal reception for the wireless access point is qualitatively acceptable.
Abstract:
A context dependent computing device. The computing device configures itself for operations based on its context. The computing device may determine its context by reading a value from a tag using low power transmissions such that receiving a value from the tag provides an indication of proximity to a location where the tag is affixed. The value read provides an indication of a desired operation. In response to reading a value of a tag, the computing device may identify an application to launch, identify devices with which to pair or take other actions that configure the computing device for its context.
Abstract:
A cellular communication system in which overload of a base station is averted by offering users the option to communicate using a spectrum outside of the spectrum allocated for cellular communication. Incentives are offered to connect to the base station using the alternative spectrum, which may not support communications at the same rate as could be supported using the spectrum allocated to the base station for cellular communications. Users may be selected to receive an offer to receive incentives based on range to the base station, with users closer to the base station being more likely to receive such an offer. The cellular communications system may be a 3G wireless system and the alternative spectrum may be white space in the digital TV spectrum.