Abstract:
In embodiments of a flexible display flexure assembly, a flexure assembly includes a structure of pivotable links that couples first and second housing parts of a foldable electronic device. The first housing part of the foldable electronic device includes a flexible display, and the first housing part is integrated with a first section of the flexible display. The second housing part of the foldable electronic device is integrated with a second section of the flexible display. The pivotable links are implemented to collapse relative to each other to form a bend radius of the flexible display and support the flexible display in a closed position of the foldable electronic device. The structure of the pivotable links is also implemented to support the flexible display in an open position of the foldable electronic device.
Abstract:
Embodiments are disclosed for a see-through head-mounted display system. In one embodiment, the see-through head-mounted display system comprises a freeform prism (316), an illumination prism (308), and a display device (306) configured to emit display light through the freeform prism and the illumination prism to an eye (302) of a user. The see-through head-mounted display system also comprises an imaging device (330), the imaging device configured to receive gaze-detection light reflected from the eye and directed through the freeform prism and the illumination prism.
Abstract:
In embodiments of a transparent display backlight assembly, a backlight panel is operable as a transparent panel, and a light source generates light that the backlight panel directs from the light source to illuminate a display panel of a display device. Light refraction features refract and scatter the light, where the light refraction features are spaced for approximate transparency of the backlight panel and to illuminate the display panel. An active diffuser can be implemented as an additional transparent panel and operable for activation to diffuse the light from the backlight panel that illuminates the display panel.
Abstract:
A binocular display includes a waveguide. A convex spherical mount has a fixed position relative to the waveguide. A light engine includes a concave spherical mount that adjustably mates with the convex spherical mount.
Abstract:
A binocular head mounted display includes a first binocular eye piece including a first torsional brace and a second binocular eye piece including a second torsional brace configured to engage the first torsional brace. The binocular head mounted also includes a frame assembly holding the first binocular eye piece and the second binocular eye piece at an adjustable interpupillary distance. The frame assembly includes a torsional support to directly or indirectly engage the first torsional brace and the second torsional brace. Such engagement resists rotational movement of the first binocular eye piece relative to the second binocular eye piece.
Abstract:
Technology is described for a projection optical system which optically couples image light from an image source to a near-eye display (NED) of a wearable near-eye display device. The projection optical system and the image source make up a projection light engine. Light from the image source is directed to a birdbath reflective optical element which is immersed in high index glass. The image light is reflected and collimated by the birdbath element and travels outside a housing of the projection light engine forming an external exit pupil, meaning the exit pupil is external to the projection light engine. A waveguide optically couples the image light of the external exit pupil. An example of a waveguide which can be used is a surface relief grating waveguide.
Abstract:
Embodiments are disclosed for adjusting alignment of a near-eye optic (306) of a see-through head-mounted display system (300). In one embodiment, a method of detecting eye location for a head-mounted display system (300) includes directing positioning light to an eye (302) of a user (304) and detecting the positioning light reflected from the eye (302) of the user (304). The method further includes determining a distance between the eye (302) and a near-eye optic (306) of the head-mounted display system (300) based on attributes of the detected positioning light, and providing feedback for adjusting the distance between the eye (302) and the near-eye optic (306).
Abstract:
Technology is disclosed for optimizing a near-eye display using a waveguide. A first waveband for a first color narrower than the full spectral bandwidth for the first color and a second waveband for a second color adjacent to the first color in the visible spectrum are generated in image light of an image generation unit like a microdisplay. The first waveband and the second waveband are coupled into a same layer of a diffractive waveguide. An input grating of the same layer of the waveguide has a grating wavelength band approximately matching a waveband extensive with the first waveband and the second waveband. A converted green light emitting diode (LED) may be used for obtaining a first waveband centered around 515nm in some examples. One of more of the wavebands may be obtained using filters, for example filters using dichroic mirrors, quantum dots or a combination of these.
Abstract:
Embodiments are disclosed herein that relate to aligning a near- eye display of a near-eye display device with an eye of a user. For example, one disclosed embodiment provides, on a near-eye display device, a method comprising receiving an image of an eye from a camera (200a) via a reverse display optical path, detecting a location of the eye in the image, and determining a relative position of the eye with regard to a target viewing position of the near-eye display. The method further comprises determining an adjustment to make to the near-eye display device to align the location of the eye with the target viewing position.
Abstract:
Technology is described for reducing display update time for a near-eye display (NED) device. A point of focus in the NED field of view is identified, often based on natural user input data. A communication module of a computer system communicatively coupled to the NED device transmits lossless priority data, an example of which is user focal region image data, using one or more communication techniques for satisfying lossless transmission criteria. Allowed loss image data is identified based at least in part on its distance vector from a point of focus in the display field of view. An example of allowed loss image data is image data to be displayed outside the user focal region. The allowed loss image data is transmitted and extracted from received image data allowing for lossy transmission.