Abstract:
Aspects of the subject matter described herein relate to storage allocation. In aspects, a hierarchical data structure is used to track allocation data for storage managed by a file system. The hierarchical data structure may have multiple levels with each level having data regarding a different granularity of storage. Portions of the hierarchical data structure may be locked independently of other portions of the hierarchical data structure. The hierarchical data structure may indicate that one or more portions of storage are for exclusive use by a directory. Extra space may be reserved in allocated space in anticipation of subsequent operations. Allocation requestors may obtain storage allocation from regions associated with different levels of the hierarchical data structure.
Abstract:
Aspects of the subject matter described herein relate to checkpoints for a file system. In aspects, updates to the file system are organized into checkpoint buckets. When a checkpoint is desired, subsequent updates are directed to another checkpoint bucket. After global tables have been updated for updates in the current checkpoint bucket, a logical copy of the global tables is created. This logical copy is stored as part of the checkpoint data. To assist in recovery, a checkpoint manager may wait until all updates of the current checkpoint bucket have been written to storage before writing final checkpoint data to storage. This final checkpoint data may refer to the logical copy of the global tables and include a validation code to verify that the checkpoint data is correct.
Abstract:
Aspects of the subject matter described herein relate to error detection for files. In aspects, before allowing updates to a clean file, a flag marking the file as dirty is written to non-volatile storage. Thereafter, the file may be updated as long as desired. Periodically or at some other time, the file may be marked as clean after all outstanding updates to the file and error codes associated with the file are written to storage. While waiting for outstanding updates and error codes to be written to storage, if additional requests to update the file are received, the file may be marked as dirty again prior to allowing the additional requests to update the file. The request to write a clean flag regarding the file may be done lazily.
Abstract:
Aspects of the subject matter described herein relate to maintaining consistency in a storage system. In aspects, one or more objects may be updated in the context of a transaction. In conjunction with updating the objects, logical copies of the objects may be obtained and modified. A request to write the updated logical copies is sent to a storage controller. The logical copies do not overwrite the original copies. In conjunction with sending the request, a data structure is provided for the storage controller to store on the disk. The data structure indicates the one or more objects that were supposed to be written to disk and may include verification data to indicate the content that was supposed to be written to disk. During recovery, this data structure may be used to determine whether all of the object(s) were correctly written to disk.
Abstract:
Aspects of the subject matter described herein relate to transactions. In aspects, a consistency requestor such as a shadow copy service requests to have a consistent view of a set of resources. In response, transactions that are in a problematic state are allowed to exit the problematic state while new and existing transactions that are not in the problematic state are allowed to perform any work except work that takes them into the problematic state. After no transactions are in the problematic state, a consistent view of the set of resources is available. This view may be used by the consistency requestor as desired. Afterwards, the consistency requestor may indicate that a consistent view is no longer needed. Transactions are then allowed to enter the problematic state. Transactions may also be allowed to enter the problematic state if a timeout elapses.
Abstract:
Aspects of the subject matter described herein relate to checkpoints for a file system. In aspects, updates to the file system are organized into checkpoint buckets. When a checkpoint is desired, subsequent updates are directed to another checkpoint bucket. After global tables have been updated for updates in the current checkpoint bucket, a logical copy of the global tables is created. This logical copy is stored as part of the checkpoint data. To assist in recovery, a checkpoint manager may wait until all updates of the current checkpoint bucket have been written to storage before writing final checkpoint data to storage. This final checkpoint data may refer to the logical copy of the global tables and include a validation code to verify that the checkpoint data is correct.
Abstract:
Aspects of the subject matter described herein relate to error detection for files. In aspects, before allowing updates to a clean file, a flag marking the file as dirty is written to non-volatile storage. Thereafter, the file may be updated as long as desired. Periodically or at some other time, the file may be marked as clean after all outstanding updates to the file and error codes associated with the file are written to storage. While waiting for outstanding updates and error codes to be written to storage, if additional requests to update the file are received, the file may be marked as dirty again prior to allowing the additional requests to update the file. The request to write a clean flag regarding the file may be done lazily.
Abstract:
Aspects of the subject matter described herein relate to storage allocation. In aspects, a hierarchical data structure is used to track allocation data for storage managed by a file system. The hierarchical data structure may have multiple levels with each level having data regarding a different granularity of storage. Portions of the hierarchical data structure may be locked independently of other portions of the hierarchical data structure. The hierarchical data structure may indicate that one or more portions of storage are for exclusive use by a directory. Extra space may be reserved in allocated space in anticipation of subsequent operations. Allocation requestors may obtain storage allocation from regions associated with different levels of the hierarchical data structure.
Abstract:
Aspects of the subject matter described herein relate to maintaining consistency in a storage system. In aspects, one or more objects may be updated in the context of a transaction. In conjunction with updating the objects, logical copies of the objects may be obtained and modified. A request to write the updated logical copies is sent to a storage controller. The logical copies do not overwrite the original copies. In conjunction with sending the request, a data structure is provided for the storage controller to store on the disk. The data structure indicates the one or more objects that were supposed to be written to disk and may include verification data to indicate the content that was supposed to be written to disk. During recovery, this data structure may be used to determine whether all of the object(s) were correctly written to disk.