Abstract:
Embodiments include processes, systems, and devices that allow a white space base station to request available frequency ranges for white space transmission in a local area. A white space finder service models a primary user device's transmission signal propagation area using terrain data associated with the local area of the primary user device. The white space finder service also determines, based on the location of the white space base station and the modeled propagation area, one or more locally available, non-interfering frequency ranges and provides them to the white space base station. The white space base station compares the provided frequency ranges to policies and selects one or more of the available frequencies that accommodate the policies. The white space base station also maps the transmission frequency ranges to virtual frequency ranges for transmission by a software-defined radio employing spectrum virtualization.
Abstract:
Functionality is described by selecting a channel in an environment in which non-privileged entities have subordinate access rights to spectrum compared to privileged entities. The functionality operates by identifying spectrum that is available to all nodes involved in communication (where the nodes are associated with non-privileged entities). The functionality then generates a suitability assessment for each candidate channel within the available spectrum. The functionality selects a channel having the most desirable suitability assessment. The functionality can form a suitability assessment for a candidate channel of arbitrary width, e.g., by combining suitability assessments associated with constituent spectrum units within the candidate channel.
Abstract:
Techniques for enhancing throughput capacity available to client devices connected to a wireless local area network (WLAN) are described. Specifically, existing WLAN resources are converted into wireless access points (APs) to create a dense infrastructure of wireless APs. To leverage this dense AP infrastructure, central management techniques are employed. With client-to-AP mapping, these techniques are used to prevent discovery of multiple APs in a WLAN by a client device and to select a single AP (using certain policies) to associate with the client device and provide it with an enhanced wireless connection to the WLAN. Additionally, techniques are employed to centrally determine, using certain policies, when the AP should disassociate from the client device and when another centrally selected AP should respond to, and associate with, the client device to provide it with an enhanced wireless connection to the WLAN - without interrupting/disrupting the client device's access.
Abstract:
Selecting communication settings. A method includes observing at least one of present, prior, or anticipated future movement of a user. Based on the observed user movement, embodiments may predict one or more future locations of the user. Based on the one or more future locations of the user, a communication setting of a device is selected to be used by the user.
Abstract:
There is provided a computer-implemented method for transmitting data over a wireless network using white spaces. A first white space transmission channel is determined for communicating with mobile client devices. Wireless communication takes place with the mobile client devices over the first white space transmission channel. If the first white space transmission channel becomes unavailable to one of the mobile client devices because of the presence of a primary user on the first white space transmission channel, a different white space transmission channel is determined for communicating with the mobile client device that is affected. Thereafter, communication with the affected wireless device takes place on the different white space transmission channel, while unaffected devices continue to communicate on the first white space transmission channel.
Abstract:
Dynamic time-spectrum block allocation for cognitive radio networks is described. In one implementation, without need for a central controller, peer wireless nodes collaboratively sense local utilization of a communication spectrum and collaboratively share white spaces for communication links between the nodes. Sharing local views of the spectrum utilization with each other allows the nodes to dynamically allocate non-overlapping time-frequency blocks to the communication links between the nodes for efficiently utilizing the white spaces. The blocks are sized to optimally pack the available white spaces. The nodes regularly readjust the bandwidth and other parameters of all reserved blocks in response to demand, so that packing of the blocks in available white spaces maintains a fair distribution of the overall bandwidth of the white spaces among active communication links, minimizes finishing time of all communications, reduces contention overhead among the nodes contending for the white spaces, and maintains non-overlapping blocks.
Abstract:
In a network management system, dependency relationships of network clients and network elements are computed. In an implementation, a dependency graph is generated based on the relationships, and the probabilities of problems associated with the network client and network element are determined based on the dependency graph.
Abstract:
Application testing and analysis may include performing perturbations to affect an environment associated with the application executing on a user device without affecting other applications executing on the user device. The execution of the application may be traced while the perturbations are being performed to determine an amount of resources of the user device consumed by the application and to determine whether a performance of the application was degraded.
Abstract:
The minimization of the amount of power consumed by an electronic device in acquiring or maintaining network connectivity with a network may extend the battery life of the electronic device. When the electronic device has established a communication connection with a wireless access point, the electronic device cycles a network interface controller of the electronic device between a power on state and a power off state without terminating the communication connection. Accordingly, the electronic device powers on a main processor of the electronic device when the network interface controller detects a beacon during the power on state that indicates the wireless access point has a buffered data frame for the electronic device.
Abstract:
Techniques for enhancing throughput capacity available to client devices connected to a wireless local area network (WLAN) are described. Specifically, existing WLAN resources are converted into wireless access points (APs) to create a dense infrastructure of wireless APs. To leverage this dense AP infrastructure, central management techniques are employed. With client-to-AP mapping, these techniques are used to prevent discovery of multiple APs in a WLAN by a client device and to select a single AP (using certain policies) to associate with the client device and provide it with an enhanced wireless connection to the WLAN. Additionally, techniques are employed to centrally determine, using certain policies, when the AP should disassociate from the client device and when another centrally selected AP should respond to, and associate with, the client device to provide it with an enhanced wireless connection to the WLAN - without interrupting/disrupting the client device's access.