Abstract:
A display that renders realistic objects allows a designer to redesign a living space in real time based on an existing layout. A computer system renders simulated objects on the display such that the simulated objects appear to the viewer to be in substantially the same place as actual objects in the scene. The displayed simulated objects can be spatially manipulated on the display through various user gestures. A designer can visually simulate a redesign of the space in many ways, for example, by adding selected objects, or by removing or rearranging existing objects, or by changing properties of those objects. Such objects also can be associated with shopping resources to enable related goods and services to be purchased, or other commercial transactions to be engaged in.
Abstract:
A pressure-sensitive multi-touch device is provided. The multi-touch device includes a matrix of pressure-sensitive cells, each pressure-sensitive cell configured to change a resistance of the cell inversely proportional to an amount of force applied to that cell. The multi-touch device further includes a force-spreading layer configured to diffuse a force of a touch input at a contact area to two or more pressure-sensitive cells within the matrix of pressure-sensitive cells.
Abstract:
A resistive matrix with optimized input scanning is provided by a method of discerning input location(s) on a resistive column-row matrix which includes receiving physically-applied input(s) at the resistive column-row matrix and, during application of the one or more physically-applied inputs, performing a hierarchical scan of the resistive column-row matrix to determine whether the physically-applied input(s) are causing activation of a column-row cell within a multi-cell group of the resistive column-row matrix. The method further includes performing a supplemental scan within a multi-cell group if it is determined that a physically-applied input is causing activation of a column-row cell within the multi-cell group, and generating, based on the hierarchical and supplemental scans, an output indicative of the input location(s) on the resistive column-row matrix of the one or more physically-applied inputs.
Abstract:
Embodiments are disclosed that relate to input devices. In one embodiment, an input device comprises a sensor matrix having first and second pluralities of conductors, a plurality of first resistors, a voltage-applying mechanism configured to apply a selected voltage to each second conductor of the plurality of second conductors, a plurality of sensors, a scanning sensing circuit, and a wake-up sensing circuit. Each first resistor is connected in series between a first voltage and a conductor of the plurality of first conductors. Each sensor includes a switch in series with a matrix resistor, and each sensor is connected to one of the plurality of first conductors and one of the plurality of second conductors. The scanning sensing circuit is connected to each of the plurality of first conductors, and the wake-up sensing circuit is connected to each of the plurality of second conductors.
Abstract:
A pressure-sensitive multi-touch device is provided. The multi-touch device includes a matrix of pressure-sensitive cells, each pressure-sensitive cell configured to change a resistance of the cell inversely proportional to an amount of force applied to that cell. The multi-touch device further includes a force-spreading layer configured to diffuse a force of a touch input at a contact area to two or more pressure-sensitive cells within the matrix of pressure-sensitive cells.
Abstract:
A resistive matrix with optimized input scanning is provided by a method of discerning input location(s) on a resistive column-row matrix which includes receiving physically-applied input(s) at the resistive column-row matrix and, during application of the one or more physically-applied inputs, performing a hierarchical scan of the resistive column-row matrix to determine whether the physically-applied input(s) are causing activation of a column-row cell within a multi-cell group of the resistive column-row matrix. The method further includes performing a supplemental scan within a multi-cell group if it is determined that a physically-applied input is causing activation of a column-row cell within the multi-cell group, and generating, based on the hierarchical and supplemental scans, an output indicative of the input location(s) on the resistive column-row matrix of the one or more physically-applied inputs.
Abstract:
Embodiments are disclosed that relate to input devices. In one embodiment, an input device comprises a sensor matrix having first and second pluralities of conductors, a plurality of first resistors, a voltage-applying mechanism configured to apply a selected voltage to each second conductor of the plurality of second conductors, a plurality of sensors, a scanning sensing circuit, and a wake-up sensing circuit. Each first resistor is connected in series between a first voltage and a conductor of the plurality of first conductors. Each sensor includes a switch in series with a matrix resistor, and each sensor is connected to one of the plurality of first conductors and one of the plurality of second conductors. The scanning sensing circuit is connected to each of the plurality of first conductors, and the wake-up sensing circuit is connected to each of the plurality of second conductors.