IDENTIFYING SALIENT ITEMS IN DOCUMENTS
    1.
    发明申请
    IDENTIFYING SALIENT ITEMS IN DOCUMENTS 审中-公开
    识别文件中的声明项目

    公开(公告)号:WO2014158834A1

    公开(公告)日:2014-10-02

    申请号:PCT/US2014/020455

    申请日:2014-03-05

    CPC classification number: G06N99/005 G06F17/30864

    Abstract: A set of representations of item-page pairs of items and respective web pages that include the respective items is obtained, each representation including feature function values indicating weights associated with features of associated web pages, the features including page classification features. An annotated set of labeled training data that is annotated with salience annotation values of items for respective web pages that include the items is obtained. The salience annotation values are determined based on a soft function, by determining a first count of a total number of user queries associated with corresponding visits to the respective web pages, and determining a ratio of a second count to the first count, the second count determined as a cardinality of a subset of the corresponding visits that are associated with user queries that include the item, the subset included in the corresponding visits. Models are trained using the annotated set.

    Abstract translation: 获得包括各个项目的项目对项目和相应网页的一组表示,每个表示包括指示与相关网页的特征相关联的权重的特征函数值,所述特征包括页面分类特征。 获得标注的训练数据的注释集合,其中包含用于包括项目的各个网页的项目的突出注释值。 通过确定与相应网页的相应访问相关联的用户查询的总数的第一计数,并且确定第二计数与第一计数的比率,第二计数,基于软功能确定突出注释值 确定为与包括项目的用户查询相关联的相应访问的子集的基数,该子集包括在相应访问中。 使用注释集训练模型。

    AUTOMATIC TASK EXTRACTION AND CALENDAR ENTRY
    2.
    发明申请
    AUTOMATIC TASK EXTRACTION AND CALENDAR ENTRY 审中-公开
    自动任务提取和日历输入

    公开(公告)号:WO2013003007A2

    公开(公告)日:2013-01-03

    申请号:PCT/US2012/041786

    申请日:2012-06-09

    CPC classification number: G06Q10/107 G06Q10/109

    Abstract: Automatically detected and identified tasks and calendar items from electronic communications may be populated into one or more tasks applications and calendaring applications. Text content retrieved from one or more electronic communications may be extracted and parsed for determining whether keywords or terms contained in the parsed text may lead to a classification of the text content or part of the text content as a task. Identified tasks may be automatically populated into a tasks application. Similarly, text content from such sources may be parsed for keywords and terms that may be identified as indicating calendar items, for example, meeting requests. Identified calendar items may be automatically populated into a calendar application as a calendar entry.

    Abstract translation: 从电子通信中自动检测和识别的任务和日历项目可以填充到一个或多个任务应用程序和日历应用程序中。 从一个或多个电子通信中检索到的文本内容可以被提取并且被解析,以确定被解析的文本中包含的关键字或者术语是否可以导致将文本内容或者文本内容的一部分分类为任务。 已识别的任务可能会自动填充到任务应用程序中。 类似地,来自这些源的文本内容可以针对关键字和术语进行解析,该关键字和术语可以被标识为指示日历项目,例如会议请求。 识别的日历项目可以自动填充到日历应用程序中作为日历项目。

    SMART SELECTION OF TEXT SPANS
    3.
    发明申请
    SMART SELECTION OF TEXT SPANS 审中-公开
    SMART选择文本传播

    公开(公告)号:WO2015053993A1

    公开(公告)日:2015-04-16

    申请号:PCT/US2014/058506

    申请日:2014-10-01

    Abstract: A text span forming either a single word or a series of two or more words that a user intended to select is predicted. A document and a location pointer that indicates a particular location in the document are received and input to different candidate text span generation methods. A ranked list of one or more scored candidate text spans is received from each of the different candidate text span generation methods. A machine-learned ensemble model is used to re-score each of the scored candidate text spans that is received from each of the different candidate text span generation methods. The ensemble model is trained using a machine learning method and features from a dataset of true intended user text span selections. A ranked list of re-scored candidate text spans is received from the ensemble model.

    Abstract translation: 预测形成用户想要选择的单个单词或一系列两个或多个单词的文本跨度。 接收指示文档中特定位置的文档和位置指针,并输入到不同的候选文本跨度生成方法。 从不同候选文本跨度生成方法的每一个接收一个或多个得分候选文本跨度的排名列表。 机器学习集合模型用于重新评分从每个不同的候选文本跨度生成方法接收的得分的候选文本跨度。 使用机器学习方法和来自真实用户文本跨度选择的数据集的特征训练集合模型。 从集合模型中收到重新评分的候选文本跨度的排名列表。

    SUMMARIZATION OF ATTACHED, LINKED OR RELATED MATERIALS
    5.
    发明申请
    SUMMARIZATION OF ATTACHED, LINKED OR RELATED MATERIALS 审中-公开
    连接,链接或相关材料的概述

    公开(公告)号:WO2008140925A1

    公开(公告)日:2008-11-20

    申请号:PCT/US2008/061804

    申请日:2008-04-28

    CPC classification number: G06Q10/107 G06F17/30719

    Abstract: A summarization system and method. The summarization method includes utilizing a first body of information to obtain a second body of information, which is identified (by a hyperlink, an attachment identifier, a reference, etc.) in the first body of information. A summary of the obtained second body of information is then computed. The computed summary can be displayed to a user and/or stored for later use.

    Abstract translation: 总结系统和方法。 总结方法包括利用第一信息体来获得在第一信息体中被识别(通过超链接,附件标识符,参考等)的第二信息体。 然后计算所获得的第二主体的摘要。 计算的摘要可以显示给用户和/或存储以供以后使用。

    SUMMARIZATION OF CONVERSATION THREADS
    7.
    发明申请

    公开(公告)号:WO2013003240A3

    公开(公告)日:2013-01-03

    申请号:PCT/US2012/043848

    申请日:2012-06-22

    Abstract: Automatically summarizing electronic communication conversation threads is provided. Electronic mails, text messages, tasks, questions and answers, meeting requests, calendar items, and the like are processed via a combination of natural language processing and heuristics. For a given conversation thread, for example, an electronic mail thread associated with a given task, a text summary of the thread is generated to highlight the most important text in the thread. The text summary is presented to a user in a visual user interface to allow the user to quickly understand the significance or relevance of the thread.

    AUTOMATIC TASK EXTRACTION AND CALENDAR ENTRY
    10.
    发明公开
    AUTOMATIC TASK EXTRACTION AND CALENDAR ENTRY 审中-公开
    自动任务与萃取-KALENDEREINTRAGUNG

    公开(公告)号:EP2727058A2

    公开(公告)日:2014-05-07

    申请号:EP12804978.0

    申请日:2012-06-09

    CPC classification number: G06Q10/107 G06Q10/109

    Abstract: Automatically detected and identified tasks and calendar items from electronic communications may be populated into one or more tasks applications and calendaring applications. Text content retrieved from one or more electronic communications may be extracted and parsed for determining whether keywords or terms contained in the parsed text may lead to a classification of the text content or part of the text content as a task. Identified tasks may be automatically populated into a tasks application. Similarly, text content from such sources may be parsed for keywords and terms that may be identified as indicating calendar items, for example, meeting requests. Identified calendar items may be automatically populated into a calendar application as a calendar entry.

Patent Agency Ranking