Abstract:
A tool for providing health and/or wellness services is described herein. Not necessarily clean or unclean data about a plurality of self-selected or non-selected or unselected subjects is received. The data can be aggregated and mined at least in part by employing a statistical algorithm, a data-mining algorithm and/or a machine-learning algorithm. The data can be further employed to provide health and/or wellness services to participants.
Abstract:
Provided are systems and/or methods that facilitate sensing, detecting, or treatment of a condition or need of a living body using a genetically engineered symbiotic agent.
Abstract:
Systems and methodologies for efficient vaccine design are disclosed herein. A methodology for efficient vaccine design in accordance with one or more embodiments disclosed herein may be operable to receive a graph having vertices corresponding to epitope sequences present in the pathogen population, weights for respective vertices corresponding to respective frequencies with which corresponding epitope sequences appear in the pathogen population, and directed edges that connect vertices that correspond to overlapping epitope sequences. Such a methodology may also be operable to determine a candidate vaccine sequence of overlapping epitope sequences by identifying a path though the graph corresponding to a series of connected vertices and directed edges that maximizes the total weight of the vertices in the path for a desired vaccine sequence length.
Abstract:
Provided are systems and/or methods that facilitate sensing, detecting, or treatment of a condition or need of a living body using a genetically engineered symbiotic agent.
Abstract:
The subject invention provides for a feedback loop system and method that facilitate classifying items in connection with spam prevention in server and/or client-based architectures. The invention makes uses of a machine-learning approach as applied to spam filters, and in particular, randomly samples incoming email messages so that examples of both legitimate and junk/spam mail are obtained to generate sets of training data. Users which are identified as spam-fighters are asked to vote on whether a selection of their incoming email messages is individually either legitimate mail or junk mail. A database stores the properties for each mail and voting transaction such as user information, message properties and content summary, and polling results for each message to generate training data for machine learning systems. The machine learning systems facilitate creating improved spam filter(s) that are trained to recognize both legitimate mail and spam mail and to distinguish between them.