Abstract:
The subject disclosure is directed towards using primary data deduplication concepts for more efficient access of data via content addressable caches. Chunks of data, such as deduplicated data chunks, are maintained in a fast access client-side cache, such as containing chunks based upon access patterns. The chunked content is content addressable via a hash or other unique identifier of that content in the system. When a chunk is needed, the client-side cache (or caches) is checked for the chunk before going to a file server for the chunk. The file server may likewise maintain content addressable (chunk) caches. Also described are cache maintenance, management and organization, including pre-populating caches with chunks, as well as using RAM and/or solid-state storage device caches.
Abstract:
The subject disclosure is directed towards a data deduplication technology in which a hash index service's index is partitioned into subspace indexes, with less than the entire hash index service's index cached to save memory. The subspace index is accessed to determine whether a data chunk already exists or needs to be indexed and stored. The index may be divided into subspaces based on criteria associated with the data to index, such as file type, data type, time of last usage, and so on. Also described is subspace reconciliation in which duplicate entries in subspaces are detected so as to remove entries and chunks from the deduplication system. Subspace reconciliation may be performed at off-peak time when more system resources are available, and may be interrupted if resources are needed. Subspaces to reconcile may be based on similarity, including via similarity of signatures that each compactly represents the subspace's hashes.
Abstract:
Distributed computing devices comprising a system for sharing computing resources can provide shared computing resources to users having sufficient resource credits. A user can earn resource credits by reliably offering a computing resource for sharing for a predetermined amount of time. The conversion rate between the amount of credits awarded, and the computing resources provided by a user can be varied to maintain balance within the system, and to foster beneficial user behavior. Once earned, the credits can be used to fund the user's account, joint accounts which include the user and others, or others' accounts that do not provide any access to the user. Computing resources can be exchanged on a peer-to-peer basis, though a centralized mechanism can link relevant peers together. To verify integrity, and protect against maliciousness, offered resources can be periodically tested.
Abstract:
In various embodiments, methods and systems for erasure coding data across multiple storage zones are provided. This may be accomplished by dividing a data chunk into a plurality of sub-fragments. Each of the plurality of sub-fragments is associated with a zone. Zones comprise buildings, data centers, and geographic regions providing a storage service. A plurality of reconstruction parities is computed. Each of the plurality of reconstruction parities computed using at least one sub-fragment from the plurality of sub-fragments. The plurality of reconstruction parities comprises at least one cross-zone parity. The at least one cross-zone parity is assigned to a parity zone. The cross-zone parity provides cross-zone reconstruction of a portion of the data chunk.
Abstract:
The subject disclosure is directed towards predicting compressibility of a data block, and using the predicted compressibility in determining whether a data block if compressed will be sufficiently compressible to justify compression. In one aspect, data of the data block is processed to obtain an entropy estimate of the data block, e.g., based upon distinct value estimation. The compressibility prediction may be used in conjunction with a chunking mechanism of a data deduplication system.
Abstract:
A particular method includes receiving a request from a client at a server and sending a global traffic management identifier in response to the request from the client. The global traffic management identifier is determined based on an attribute of the client. In response to the client requesting access to a service based on a modified hostname of the service, a data center associated with the service is identified based on the modified hostname of the service. The modified hostname identifies the global traffic management identifier, and the identified data center is useable by the client to access the service.
Abstract:
The subject disclosure is directed towards a data deduplication technology in which a hash index service's index and/or indexing operations are adaptable to balance deduplication performance savings, throughput and resource consumption. The indexing service may employ hierarchical chunking using different levels of granularity corresponding to chunk size, a sampled compact index table that contains compact signatures for less than all of the hash index's (or subspace's) hash values, and/or selective subspace indexing based on similarity of a subspace's data to another subspace's data and/or to incoming data chunks.
Abstract:
The subject disclosure is directed towards a data deduplication technology in which a hash index service's index maintains a hash index in a secondary storage device such as a hard drive, along with a compact index table and look-ahead cache in RAM that operate to reduce the I/O to access the secondary storage device during deduplication operations. Also described is a session cache for maintaining data during a deduplication session, and encoding of a read-only compact index table for efficiency.
Abstract:
Techniques and technologies for routing communications based on Quality of Service (QOS) related information. More particularly, this document discloses techniques and technologies for selecting communications paths which partially overlap other communication paths for which QOS related information has been measured. The techniques and technologies include determining, performance levels for path segments within the communication paths from the measured QOS information.
Abstract:
An erasure resilient coding (ERC) distributed data storage system and method for storing data in a reliable and survivable fashion while minimizing hardware and associated costs. The system and method includes forming multiple protection groups both within and across storage nodes of the storage system. Data is segmented into original data blocks and ERC data blocks. Load balancing occurs by interleaving storage nodes with equal numbers of original data blocks and ERC data blocks while ensuring each node has an equal number of combined read and write operations. Unique read and write operations on data block can be performed independent of other data blocks in a protection group. The write operation uses Galois field arithmetic and ERC transform to either write or append a new data block to a storage node. The read operation recovers data in a variety of ways using ERC decoding.