Abstract:
A method and system use an alternative sensor signal received from a sensor other than an air conduction microphone to estimate a clean speech value. The estimation uses either the alternative sensor signal alone, or in conjunction with the air conduction microphone signal. The clean speech value is estimated without using a model trained from noisy training data collected from an air conduction microphone. Under one embodiment, correction vectors are added to a vector formed from the alternative sensor signal in order to form a filter, which is applied to the air conductive microphone signal to produce the clean speech estimate. In other embodiments, the pitch of a speech signal is determined from the alternative sensor signal and is used to decompose an air conduction microphone signal. The decomposed signal is then used to determine a clean signal estimate.
Abstract:
A system that captures both whiteboard content and audio signals of a meeting using a digital camera and a microphone. The system can be retrofit to any existing whiteboard. It computes the time stamps of pen strokes on the whiteboard by analyzing the sequence of captured snapshots. It also automatically produces a set of key frames representing all the written content on the whiteboard before each erasure. The whiteboard content serves as a visual index to efficiently browse the audio meeting. The system not only captures the whiteboard content, but also helps the users to view and manage the captured meeting content efficiently and securely.
Abstract:
The present invention includes a real-time wide-angle image correction system and a method for alleviating distortion and perception problems in images captured by wide-angle cameras. In general, the real-time wide-angle image correction method generates warp table from pixel coordinates of a wide-angle image and applies the warp table to the wide-angle image to create a corrected wide-angle image. The corrections are performed using a parametric class of warping functions that include Spatially Varying Uniform (SVU) scaling functions. The SVU scaling functions and scaling factors are used to perform vertical scaling and horizontal scaling on the wide-angle image pixel coordinates. A horizontal distortion correction is performed using the SVU scaling functions at and at least two different scaling factors. This processing generates a warp table that can be applied to the wide-angle image to yield the corrected wide-angle image.
Abstract:
A method and apparatus classify a portion of an alternative sensor signal as either containing noise or not containing noise. The portions of the alternative sensor signal that are classified as containing noise are not used to estimate a portion of a clean speech signal and the channel response associated with the alternative sensor. The portions of the alternative sensor signal that are classified as not containing noise are used to estimate a portion of a clean speech signal and the channel response associated with the alternative sensor.
Abstract:
The present invention combines a conventional audio microphone with an additional speech sensor that provides a speech sensor signal based on an input. The speech sensor signal is generated based on an action undertaken by a speaker during speech, such as facial movement, bone vibration, throat vibration, throat impedance changes, etc. A speech detector component receives an input from the speech sensor and outputs a speech detection signal indicative of whether a user is speaking. The speech detector generates the speech detection signal based on the microphone signal and the speech sensor signal.
Abstract:
A method and system use an alternative sensor signal received from a sensor other than an air conduction microphone to estimate a clean speech value. The estimation uses either the alternative sensor signal alone, or in conjunction with the air conduction microphone signal. The clean speech value is estimated without using a model trained from noisy training data collected from an air conduction microphone. Under one embodiment, correction vectors are added to a vector formed from the alternative sensor signal in order to form a filter, which is applied to the air conductive microphone signal to produce the clean speech estimate. In other embodiments, the pitch of a speech signal is determined from the alternative sensor signal and is used to decompose an air conduction microphone signal. The decomposed signal is then used to determine a clean signal estimate.
Abstract:
A mobile device (1300) includes an air conduction microphone and an alternative sensor that provides an alternative sensor signal indicative of speech. A communication interface permits the mobile device to communicate directly with other mobile devices (1302,1304).