Abstract:
An integration system is disclosed that provides a virtual desktop integration with terminal services. A client computer is connected to one the virtual desktops operating in a server. The client computer examines information contained in a remote desktop protocol (RDP) compliant packet supplied by the server. The client computer connects to one of the many virtual desktops based on information. Use of the information enables integration of the virtual desktop with the existing terminal session deployment model. Client devices can establish a session using a single network name and can be appropriately directed to either a virtual desktop or terminal session.
Abstract:
Implementations of the present invention relate to a communication framework that is readily adaptable to a wide variety of resources intended to be accessible through a firewall. In general, a communication framework at a gateway server can provide a specific connection to a requested resource in accordance with a wide range of resource and/or network access policies. In one instance, a client requests a connection to a specific resource behind a firewall. The communication framework authenticates the connection, and quarantines the connection until determining, for example, that the client is using an appropriate resource features. If appropriately authenticated, the communication framework can pass control of the connection to an appropriately identified protocol plug-in processor, which facilitates a direct connection to the requested resource at an application layer of a communication stack.
Abstract:
Techniques for configuring and operating a virtual desktop session are disclosed herein. In an exemplary embodiment, an inter-partition communication channel can be established between a virtualization platform and a virtual machine. The inter-partition communication channel can be used to configure a guest operating system to conduct virtual desktop sessions and manage running virtual desktop sessions. In addition to the foregoing, other techniques are described in the claims, the detailed description, and the figures.
Abstract:
Techniques for configuring a commodity server to host virtual hard disks are disclosed herein. In an exemplary embodiment, a virtual hard disk file can be split into a plurality of differencing VHD files and one or more of the files can be downloaded to a virtualization host as it runs off the VHD files stored on the server. After the one or more VHD files are downloaded, the virtualization host can be configured to use the local copy instead of the copy on the commodity server. In addition to the foregoing, other techniques are described in the claims, the detailed description, and the figures.
Abstract:
Implementations of the present invention efficiently establish secure connections between a client and server, at least in part by authenticating the client and server early on in the connection setup phases. A client initiating a connection with a server identifies the secure communication protocols enabled at the client, and identifies these protocols in a connection request it sends to the server. The server processes the message and responds with a communication protocol it deems appropriate for the connection. The client and server then exchange appropriate authentication information, and then establish a connection session that implements the chosen communication protocol, and encrypts messages using the negotiated communication protocol. Additional implementations relate to reestablishing dropped connections behind virtual Internet Protocol addresses, without necessarily having to recommit much connection resource overhead.
Abstract:
Techniques for configuring a commodity server to host virtual hard disks are disclosed herein. In an exemplary embodiment, a virtual hard disk file can be split into a plurality of differencing VHD files and one or more of the files can be downloaded to a virtualization host as it runs off the VHD files stored on the server. After the one or more VHD files are downloaded, the virtualization host can be configured to use the local copy instead of the copy on the commodity server. In addition to the foregoing, other techniques are described in the claims, the detailed description, and the figures.
Abstract:
Techniques for configuring and operating a virtual desktop session are disclosed herein. In an exemplary embodiment, an inter-partition communication channel can be established between a virtualization platform and a virtual machine. The inter-partition communication channel can be used to configure a guest operating system to conduct virtual desktop sessions and manage running virtual desktop sessions. In addition to the foregoing, other techniques are described in the claims, the detailed description, and the figures.
Abstract:
Implementations of the present invention efficiently establish secure connections between a client and server, at least in part by authenticating the client and server early on in the connection setup phases. A client initiating a connection with a server identifies the secure communication protocols enabled at the client, and identifies these protocols in a connection request it sends to the server. The server processes the message and responds with a communication protocol it deems appropriate for the connection. The client and server then exchange appropriate authentication information, and then establish a connection session that implements the chosen communication protocol, and encrypts messages using the negotiated communication protocol. Additional implementations relate to reestablishing dropped connections behind virtual Internet Protocol addresses, without necessarily having to recommit much connection resource overhead.
Abstract:
Implementations of the present invention relate to a communication framework that is readily adaptable to a wide variety of resources intended to be accessible through a firewall. In general, a communication framework at a gateway server can provide a specific connection to a requested resource in accordance with a wide range of resource and/or network access policies. In one instance, a client requests a connection to a specific resource behind a firewall. The communication framework authenticates the connection, and quarantines the connection until determining, for example, that the client is using an appropriate resource features. If appropriately authenticated, the communication framework can pass control of the connection to an appropriately identified protocol plug-in processor, which facilitates a direct connection to the requested resource at an application layer of a communication stack.