I-VECTOR BASED CLUSTERING TRAINING DATA IN SPEECH RECOGNITION
    1.
    发明申请
    I-VECTOR BASED CLUSTERING TRAINING DATA IN SPEECH RECOGNITION 审中-公开
    基于I-VECTOR的群集训练数据在语音识别中的应用

    公开(公告)号:WO2014029099A1

    公开(公告)日:2014-02-27

    申请号:PCT/CN2012/080527

    申请日:2012-08-24

    CPC classification number: G10L15/063 G10L15/14 G10L2015/0631

    Abstract: Methods and systems for i-vector based clustering training data in speech recognition are described. An i-vector may be extracted from a speech segment of a speech training data to represent acoustic information. The extracted i-vectors from the speech training data may be clustered into multiple clusters using a hierarchical divisive clustering algorithm. Using a cluster of the multiple clusters, an acoustic model may be trained. This trained acoustic model may be used in speech recognition.

    Abstract translation: 描述了基于i矢量的聚类训练数据在语音识别中的方法和系统。 可以从语音训练数据的语音段中提取i向量以表示声学信息。 来自语音训练数据的提取的i向量可以使用分级分割聚类算法聚类成多个聚类。 使用多个群集的群集,可以训练一个声学模型。 该训练的声学模型可用于语音识别。

    POSTERIOR-BASED FEATURE WITH PARTIAL DISTANCE ELIMINATION FOR SPEECH RECOGNITION
    2.
    发明申请
    POSTERIOR-BASED FEATURE WITH PARTIAL DISTANCE ELIMINATION FOR SPEECH RECOGNITION 审中-公开
    具有基于语音识别的局部距离消除的基于特征的特征

    公开(公告)号:WO2014137760A2

    公开(公告)日:2014-09-12

    申请号:PCT/US2014/019147

    申请日:2014-02-27

    CPC classification number: G10L15/14 G10L15/10

    Abstract: A high-dimensional posterior-based feature with partial distance elimination may be utilized for speech recognition. The log likelihood values of a large number of Gaussians are needed to generate the high-dimensional posterior feature. Gaussians with very small log likelihoods are associated with zero posterior values. Log likelihoods for Gaussians for a speech frame may be evaluated with a partial distance elimination method. If the partial distance of a Gaussian is already too small, the Gaussian will have a zero posterior value. The partial distance may be calculated by sequentially adding individual dimensions in a group of dimensions. The partial distance elimination occurs when less than all of the dimensions in the group are sequentially added.

    Abstract translation: 具有部分距离消除的高维后验特征可用于语音识别。 需要大量高斯的对数似然值来产生高维后验特征。 具有非常小的对数似然性的高斯与零后验值相关联。 用于语音帧的高斯的对数可能性可以用部分距离消除方法来评估。 如果高斯的部分距离已经太小,则高斯将具有零后验值。 可以通过在一组维度中依次添加个体维度来计算部分距离。 当小于组中的所有维度被顺序地添加时,发生部分距离消除。

Patent Agency Ranking