Abstract:
A digital FM demodulator and method for determining phase changes in highly oversampled complex FM digital signals is described. In a first embodiment the FM signal is oversampled with respect to the frequency of its associated modulating signal. In this embodiment a first digital processing stage delays and conjugates the original FM signal. This delayed conjugated original FM signal is then multiplied with the original FM signal to generate a second signal that represents the changes in the phase between samples of the original FM signal. A second processing stage then delays and conjugates the second signal. The delayed conjugated second signal is then multiplied with the original second signal to generate a third signal that represents changes in the phase between samples of the second signal. The imaginary component of the third signal is passed through a digital integrator which outputs the phase changes of the original FM signal. In a second embodiment, the highly oversampled signal is oversampled with respect to the deviation frequency of its associated modulating signal. In this embodiment the center frequency of the original FM signal is frequency shifted to approximately zero frequency. This frequency shifted signal is then delayed and conjugated. The delayed conjugated shifted signal is then multiplied with the original frequency shifted signal; yielding an output signal where the imaginary portion of the output signal is equal to the phase changes of the original FM signal.
Abstract:
The present invention is an improvement of a digital topology including a logic block portion and a buffer portion. The improved buffer portion of the present invention is implemented with first and second parallel, same conductivity type transmission gates. The transmission gates couple either a first (V1) or second (V2) voltage onto the output of the buffer (55) in response to a logic signal originating from the logic block portion. The first (V1) and second (V2) voltages are selected to be relatively close in magnitude such that the peak-to-peak voltage of the digital output signal seen on the output of the buffer is relatively small. As a result, power consumption for charging the output of the buffer is minimized. In addition, the parallel transmission gates only consume power while charging the output of the buffer so that quiescent power consumption of the buffer is eliminated. Quiescent power dissipation is also eliminated in certain types of logic block designs that include logic gates having constant current sources. This is achieved by enabling the current sources with a pulse signal. The pulse width and magnitude of the pulse signal is selected to allow a latched sense amplifier to sense valid data from the output of the logic block portion during a specified interval. After valid data is sensed, the logic blocks's current sources are disabled, and the logic block portion no longer consumes any power. The sense amplifier is enabled for intervals long enough to capture the data from the logic block and drive the transmission gates with the data. In this configuration, none of the elements in the topology dissipate quiescent power since none of them are constantly operating.
Abstract:
An improvement for reducing proximity effects comprised of additional lines, referred to as intensity leveling bars, into the mask pattern. The leveling bars perform the function of adjusting the edge intensity gradients of isolated edges in the mask pattern, to match the edge intensity gradients of densely packed edges. Leveling bars are placed parallel to isolated edges such that intensity gradient leveling occurs on all isolated edges of the mask pattern. In addition, the leveling bars are designed to have a width significantly less than the resolution of the exposure tool. Therefore, leveling bars that are present in the mask pattern produce resist patterns that completely developed away when a nominal exposure energy is utilized during exposure of photoresist.
Abstract:
A method and data processing system for transferring data between the system and a memory system using more than one byte ordering convention by incorporating byte order information into instruction codes. The byte order information is coupled to a control unit along with other information characterizing the data transfer operation. In response to the byte order information and the data transfer operation information, the control unit generates a control signal that is coupled to a BPU. The control signal causes the BPU to rearrange the order of bytes in the data being transferred when the byte order information indicates a first byte ordering format. When the byte order information indicates a second byte ordering format, the BPU does not change the order of the bytes in the data being transferred.
Abstract:
A general purpose, programmable media processor (12) for processing and transmitting a media data streams. The media processor (12) incorporates an execution unit (100) that maintains substantially peak data throughout of media data streams. The execution unit (100) includes a dynamically partionable multi-precision arithmetic unit (102), programmable switch (104) and programmable extended mathematical element (106). A high bandwidth external interface (124) supplies media data streams at substantially peak rates to a general purpose register file (110) and the execution unit. A memory management unit, and instruction and data cache/buffers (118, 120). The general purpose, programmable media processor (12) is disposed in a network fabric consisting of fiber optic cable, coaxial cable and twisted pair wires to transmit, process and receive single or unified media data streams.
Abstract:
The present invention encompasses techniques for reducing digital noise in integrated circuits and circuit assemblies, particularly dense mixed-signal integrated circuits, based upon shaping the noise from the digital circuit and concentrating it in a single, or a small number, of parts of the frequency spectrum. Generally, the presence of noise in the analog circuit is less important at certain frequencies, and therefore the spectral peak or peaks from the digital circuit can be carefully placed to result in little or no interference. As an example, a radio receiver might be designed such that the peaks of the digital noise lie between received channels, outside the band edges of each.
Abstract:
In a lithographical tool utilizing off-axis illumination, masks to provide increased depth of focus and minimize CD differences between certain features are disclosed. A first mask for reducing proximity effects between isolated and densely packed features and increasing depth of focus (DOF) of isolated features is disclosed. The first mask comprises additional lines (214) referred to as scattering bars, disposed next to isolated edges. The bars are spaced a distance from isolated edges such that isolated and densely packed edge gradients substantially match so that proximity effects become negligible. The width of the bars is set so that a maximum DOF range for the isolated feature is achieved. A second mask, that is effective with quadrupole illumination only, is also disclosed. This mask "boosts" intensity levels and consequently DOF ranges for smaller square contacts so that they approximate intensity levels and DOF ranges of larger elongated contacts. Increasing the intensity levels in smaller contacts reduces critical dimension differences between variably sized contact patterns when transferred to a resist layer. The second mask comprises additional openings, referred to as anti-scattering bars, disposed about the square contact openings. The amount of separation between the edge of the smaller contact and the anti-scattering bars determines the amount of increased intensity. The width of the anti-scattering bars determines the amount of increase in DOF range. Both scattering bar and anti-scattering bars are designed to have widths significantly less than the resolution of the exposure tool so that they do not produce a pattern during exposure of photoresist.
Abstract:
The present invention describes a bias potential distribution system which provides bias potentials to MOS devices while ensuring the devices' operating conditions remain constant over temperature, process, and power supply fluctuations. Further, bias potentials are generated at one main location within the logic circuit and then distributed throughout the logic circuit to all of the MOS devices or to bias voltage conversion circuits.
Abstract:
A system for processing geometry which reduces the amount of memory spaces while improving the processing speed. The system delivers vertices in sequence to a vertex queue (70) so that data in the vertex queue is freed as it is delivered and only minimal intermediate results are stored. By this incremental evaluation, less memory space is needed. In another aspect of the invention the vertices are maintained in the proper sequence so that sorting operation can be eliminated. A sorted vertex queue (70) and an unsorted vertex list (72) are utilized so that resorting of the entire vertex list may be prevented. In addition, a compressed format (34) for storing geometry is utilized based on the fact that much information can be rederived from a sorted and reduced vertex queue.
Abstract:
A compact FIR filter uses one or both of a compact address sequencer and a compact multiplier/accumulator. The address sequencer exploits certain symmetry properties existing between different phases of a polyphase FIR filter in order to reduce coefficient storage and simplify address sequencing. The multiplier/accumulator is capable of performing two multiply/accumulate operations per clock cycle, avoiding in certain instances the need to add a second multiplier/accumulator. The area required to realize an FIR filter for performing real-time filter is therefore reduced.