Abstract:
A method of communication between two or more terminals (6, 7) with detection of interference, especially in a HiperLAN/2 system, comprising transmitting data between the terminals (6, 7) in electromagnetic signals of at least a first duration, the electromagnetic signals comprising one or more carrier frequencies within one or more ranges (1, 2) for which extra-system interference, especially with radar signals, is possible, at least one of the terminals (6, 7) being responsive to received signal strengths corresponding to intra-system interference (4, 17, 18). Detection of extra-system interference (5, 16) comprises at least one of the terminals (6, 7) responding selectively to received signal strengths that exceed a threshold level (19) for a second duration that is shorter than the first duration.
Abstract:
An apparatus for improving signal mismatch compensation between first and second RF signals comprises: at least one switch which applies a first RF signal, present on a first pathway, and a second RF signal, present on a second pathway, to respective first and second frequency mixers, during a first time period; the mixers provide a first pair of mixed first and second RF signals. Means for reversing the at least one switch, during a subsequent time period is provided so that the first RF signal is applied to the second mixer, via the second pathway, and the second RF signal is applied to the first mixer, via the first pathway. The mixers thereby provide a second pair of mixed first and second RF signals. Monitoring monitors respective first and second pairs of mixed RF signals during an interval. The monitoring means provides time averaged values for the first and second signals in each of said first and second pairs of RF signals, so that effects of signal mismatch on the first and second RF signals are minimised in each channel, by subjecting said RF signals in each channel, for substantially the same time, to the same pathways.
Abstract:
In an orthogonal frequency division multiplex communication system, for example a HIPERLAN/2 system, power amplifiers (224) of mobile terminals (4, 6) are switched off when not in use, and then switched on again when a signal transmission is to be made. This conserves power, but introduces a power amplifier transient (315). An access point (2), i.e. a type of base station, compensates for these power amplifier transients (315) using a simple scalar constant gain transient correction, over a full OFDM symbol (or a plurality of OFDM symbols). The correction is updated on an OFDM symbol by symbol basis (or plurality of symbols by plurality of symbols basis).