Abstract:
PROBLEM TO BE SOLVED: To provide a method and device for effectively calculating log likeli hood ratio on each bit in M-aryQAM modulated signals transmitted in a commu nication system, in order to reduce the time for calculating log likelihood ratio. SOLUTION: This method and device uses characteristics of the square Carnot mapping in QAM code set in order to reduce the number of distance calculation needed in determining log likelihood ratio on each bit in M-aryQAM modulated signals. The reduction of number of the calculation reduces the much more time needed in determining the log likelihood ratio, especially in the case of higher order M-aryQAM system.
Abstract:
A method and apparatus to efficiently calculate log-likelihood ratios for ea ch bit within M-ary QAM modulated symbols transmitted in a communication system . The method and apparatus utilize characteristics of square Karnaugh mapping of the QAM symbol constellation in order to reduce the number of distance calculations needed to determine the log-likelihood ratios for each of the bits within a demodulated symbol. The reduction in the number of calculations affords significant reduction in the time needed to determine log-likelihood ratios, especially for higher order M-ary QAM systems.
Abstract:
A method and apparatus to efficiently calculate log-likelihood ratios for ea ch bit within M-ary QAM modulated symbols transmitted in a communication system . The method and apparatus utilize characteristics of square Karnaugh mapping of the QAM symbol constellation in order to reduce the number of distance calculations needed to determine the log-likelihood ratios for each of the bits within a demodulated symbol. The reduction in the number of calculations affords significant reduction in the time needed to determine log-likelihood ratios, especially for higher order M-ary QAM systems.
Abstract:
A method, apparatus and system for use in determining a pilot-to-data power ratio by receiving a data symbol (122) having a data amplitude, receiving a pilot signal (124) having a pilot amplitude, reverse training (350) an automatic gain (154) based on the data amplitude and the pilot amplitude, and determining a pilot-to-data power ratio (250) according to the reverse training of the automatic gain. In some embodiments the method further compensates for channel fading in the data symbol by providing for channel correction (340) on the data symbol, providing for channel correction (344) on the pilot signal and dividing the channel corrected data symbol by the channel corrected pilot signal providing a fading compensated data symbol, where the fading compensated data symbol (150) is provided prior to reverse training such that the reverse training is based at least in part on the fading compensated data symbol.
Abstract:
A method, apparatus and system for use in determining a pilot-to-data power ratio by receiving a data symbol (122) having a data amplitude, receiving a pilot signal (124) having a pilot amplitude, reverse training (350) an automatic gain (154) based on the data amplitude and the pilot amplitude, and determining a pilot-to-data power ratio (250) according to the reverse training of the automatic gain. In some embodiments the method further compensates for channel fading in the data symbol by providing for channel correction (340) on the data symbol, providing for channel correction (344) on the pilot signal and dividing the channel corrected data symbol by the channel corrected pilot signal providing a fading compensated data symbol, where the fading compensated data symbol (150) is provided prior to reverse training such that the reverse training is based at least in part on the fading compensated data symbol.