Abstract:
A wireless communications device (102) includes a flip assembly 106 that includes a speaker (120) and that has a GPS antenna (104) mounted about a fa r edge. The flip assembly (106) further has a GPS RF amplifier (314) mounted adjacent to the GPS antenna (104) for amplifying signals received by the GPS antenna (104) and providing those amplified signals to a GPS RF stripline (312). The GPS RF stripline (312) includes a flexible RF stripline (404) to accommodate rotationally opening and closing of the flip assembly (106). Positioning of the GPS antenna (104) about the far edge of the flip assembly (106) removes the GPS antenna from a main housing assembly (108) of the wireless communications device (102) and provides for better GPS signal reception performance.
Abstract:
A wireless communications device ( 102 ) includes a flip assembly 106 that includes a speaker ( 120 ) and that has a GPS antenna ( 104 ) mounted about a far edge. The flip assembly ( 106 ) further has a GPS RF amplifier ( 314 ) mounted adjacent to the GPS antenna ( 104 ) for amplifying signals received by the GPS antenna ( 104 ) and providing those amplified signals to a GPS RF stripline ( 312 ). The GPS RF stripline ( 312 ) includes a flexible RF stripline ( 404 ) to accommodate rotationally opening and closing of the flip assembly ( 106 ). Positioning of the GPS antenna ( 104 ) about the far edge of the flip assembly ( 106 ) removes the GPS antenna from a main housing assembly ( 108 ) of the wireless communications device ( 102 ) and provides for better GPS signal reception performance.
Abstract:
A wireless communications device (102) includes a flip assembly 106 that includes a speaker (120) and that has a GPS antenna (104) mounted about a fa r edge. The flip assembly (106) further has a GPS RF amplifier (314) mounted adjacent to the GPS antenna (104) for amplifying signals received by the GPS antenna (104) and providing those amplified signals to a GPS RF stripline (312). The GPS RF stripline (312) includes a flexible RF stripline (404) to accommodate rotationally opening and closing of the flip assembly (106). Positioning of the GPS antenna (104) about the far edge of the flip assembly (106) removes the GPS antenna from a main housing assembly (108) of the wireless communications device (102) and provides for better GPS signal reception performance.
Abstract:
A wireless communications device (102) includes a flip assembly 106 that includes a speaker (120) and that has a GPS antenna (104) mounted about a far edge. The flip assembly (106) further has a GPS RF amplifier (314) mounted adjacent to the GPS antenna (104) for amplifying signals received by the GPS antenna (104) and providing those amplified signals to a GPS RF stripline (312). The GPS RF stripline (312) includes a flexible RF stripline (404) to accommodate rotationally opening and closing of the flip assembly (106). Positioning of the GPS antenna (104) about the far edge of the flip assembly (106) removes the GPS antenna from a main housing assembly (108) of the wireless communications device (102) and provides for better GPS signal reception performance.
Abstract:
A wideband antenna (10) includes a plurality of conductive strands (12) randomly interconnected and further coupled to a feedpoint (19) and a sheath (52) structurally retaining the plurality of conductive strands. The sheath can be a thin dielectric coating and the plurality of conductive strands can each be taller than one-quarter wavelength. The wideband antenna can have low dielectric losses while maintaining a multi-octave bandwidth. Air can be used as a dielectric between the plurality of conductive strands.
Abstract:
A multiband element antenna (120) used in combination with a unique metal chassis design that enhances antenna performance and that enables the design of a compact and efficient antenna system. A cellular flip phone (100) that has a conductive chassis includes a flip up antenna (120) that pivots between an extended and a retracted position. The antenna (120) pivots at a point that is located on one edge of the top of the cell phone body (102). The conductive chassis of the flip cover (104) is grounded to the flip phone body (102) at a single point or single surface that is substantially opposite the antenna RF feed (122). Conductive surfaces of the cellular flip phone body (102) are grounded at a single point that is near the antenna RF feed point (122). This grounding arrangement has been found to control the flow of induced currents on the conductive portions of the flip cover (104) and body (102), thereby improving the performance of the device's antenna (120).
Abstract:
A multiband element antenna (120) used in combination with a unique metal chassis design that enhances antenna performance and that enables the design of a compact and efficient antenna system. A cellular flip phone (100) that has a conductive chassis includes a flip up antenna (120) that pivots between an extended and a retracted position. The antenna (120) pivots at a point that is located on one edge of the top of the cell phone body (102). The conductive chassis of the flip cover (104) is grounded to the flip phone body (102) at a single point or single surface that is substantially opposite the antenna RF feed (122). Conductive surfaces of the cellular flip phone body (102) are grounded at a single point that is near the antenna RF feed point (122). This grounding arrangement has been found to control the flow of induced currents on the conductive portions of the flip cover (104) and body (102), thereby improving the performance of the device's antenna (120).
Abstract:
A wideband antenna (10) includes a plurality of conductive strands (12) randomly interconnected and further coupled to a feedpoint (19) and a sheath (52) structurally retaining the plurality of conductive strands. The sheath can be a thin dielectric coating and the plurality of conductive strands can each be taller than one-quarter wavelength. The wideband antenna can have low dielectric losses while maintaining a multi-octave bandwidth. Air can be used as a dielectric between the plurality of conductive strands.