Abstract:
A slot format and acknowledgment method for use in a communication network that contains one or more wireless links. The slot format provides for the segmenting and reassembly of packets for transport over a wireless link. It also provides support for multiple types of service for the data being carried over the wireless link as well as allocating of access to the wireless link among a plurality of communication units. The acknowledgment method provides for detection of errors over the wireless link, the selective acknowledgment of error-free transmissions and the selective resending of transmissions received in error.
Abstract:
In an outbound transmission ( 300 ), an address of a first subscriber unit assigned to transmit in a first inbound slot is identified. With one bit in the outbound transmission ( 300 ), an additional inbound slot the first subscriber unit is assigned to transmit is identified.
Abstract:
Methods for sequencing datagram transmissions are disclosed, including, receiving an unqueued segment to be enqueued in a queue. The queue comprises at least one segment. Determining a priority level and a number of attempted transmissions for the unqueued segment ( 100 ). If the unqueued segment is enqueued in front of a segment belonging to a datagram in the queue, and at least one segment belonging to the datagram has been transmitted before all the segments belonging to the datagram have been transmitted, at least one of the following functions is performed: discarding any remaining segments belonging to the datagram in the queue, transmitting any remaining segments belonging to the datagram in the queue, and re-enqueuing segments belonging to the datagram at the same location in the queue as the partially transmitted datagram, but with a different identifier.
Abstract:
A radio frequency communications system ( 100 ) includes wireless terminals ( 102 ) and base sites ( 104 ). The wireless terminals communicate with the base sites over a radio frequency channel ( 106 ). The base sites are interconnected to each other and other network elements via a packet network. The communication system has a radio frequency channel ( 400 ) with time slots ( 406, 408 ) for transmission of both delay-sensitive data, such as streaming audio and video, and non-delay-sensitive data. A method and apparatus are provided for determining whether a time slot in the radio frequency channel is to be allocated to delay-sensitive data or non-delay-sensitive data ( 704, 706, 708 ). Each packet of data transmitted over the wireless channel has a type of service field ( 900 ). The type of service field has a precedence or priority value ( 902 ) and a service type ( 904 ). The priority values are used to determine which packet should be transmitted across the radio frequency channel next and the service type determines the transmission protocol.
Abstract:
An outbound message (200) identifies a slot type associated with each timeslot in a scheduling period. In one embodiment, the outbound message further identifies at least an address of a first subscriber group assigned to transmit in a first timeslot (206) if the slot type of the first timeslot is of a first type and an address of a second subscriber group assigned to transmit in a second timeslot (208) if the slot type of the second timeslot is of a second type, wherein the first type and the second type could be the same or different. In a second embodiment, the outbound message further identifies at least a group address associated with a plurality of subscriber units assigned to transmit in a first timeslot if the slot type of the first timeslot is of a first type. In yet a third embodiment, the outbound message further identifies an address of a first subscriber group assigned to transmit in a first timeslot if the slot type of the first timeslot is of the first type, and a second timeslot (210) of a second type.
Abstract:
In an outbound transmission ( 300 ), an address of a first subscriber unit assigned to transmit in a first inbound slot is identified. With one bit in the outbound transmission ( 300 ), an additional inbound slot the first subscriber unit is assigned to transmit is identified.
Abstract:
An outbound message (200) identifies a slot type associated with each timeslot in a scheduling period. In one embodiment, the outbound message further identifies at least an address of a first subscriber group assigned to transmit in a first timeslot (206) if the slot type of the first timeslot is of a first type and an address of a second subscriber group assigned to transmit in a second timeslot (208) if the slot type of the second timeslot is of a second type, wherein the first type and the second type could be the same or different. In a second embodiment, the outbound message further identifies at least a group address associated with a plurality of subscriber units assigned to transmit in a first timeslot if the slot type of the first timeslot is of a first type. In yet a third embodiment, the outbound message further identifies an address of a first subscriber group assigned to transmit in a first timeslot if the slot type of the first timeslot is of the first type, and a second timeslot (210) of a second type.
Abstract:
An outbound message (200) identifies a slot type associated with each timeslot in a scheduling period. In one embodiment, the outbound message further identifies at least an address of a first subscriber group assigned to transmit in a first timeslot (206) if the slot type of the first timeslot is of a first type and an address of a second subscriber group assigned to transmit in a second timeslot (208) if the slot type of the second timeslot is of a second type, wherein the first type and the second type could be the same or different. In a second embodiment, the outbound message further identifies at least a group address associated with a plurality of subscriber units assigned to transmit in a first timeslot if the slot type of the first timeslot is of a first type. In yet a third embodiment, the outbound message further identifies an address of a first subscriber group assigned to transmit in a first timeslot if the slot type of the first timeslot is of the first type, and a second timeslot (210) of a second type.