Abstract:
A battery pack 12 for powering a device 14 sensitive to input voltage contains a protection switch 28 and a control circuit 26. When the battery pack 12 is charged by a charger 10 and the voltage of the battery pack approaches the maximum safe level of the device 14, the control circuit 26 causes the protection switch 28 to electrically switch open to protect the device 14 from excessive voltage potentially output by the charger. Where the cells 16 are lithium ion cells or a type having a maximum safe voltage, a safety switch 49 is included to interrupt charge current 52 through the cells 16. The safety switch 49 is delayed by resistor/capacitor network 51, 53 so that it switches after the protection switch 28. The safety switch 49 includes a diode 58 to allow the device 14 to remain powered while the safety switch is blocking charge current. Further, diodes 40 and 42 are required to eliminate measurement error of the control circuit 26 if the battery pack 12 is charged through the device contacts 20 and 24.
Abstract:
A secondary battery (100) includes a cell (110) having a positive terminal (115) and a negative terminal (120), a device (130, 140) for coupling the positive terminal (115) to the negative terminal (120) in response to swelling of the cell (100), and a fuse (125) coupled between the positive terminal (115) and the negative terminal (120) in response to swelling of the cell (110). According to another aspect of the present invention, a secondary battery (700) has external contacts (150, 155) and includes a cell (110) having a positive terminal (115) and a negative terminal (120) that are coupled to the external contacts (150, 155) during normal cell operation. In response to swelling of the cell (110), a device (705, 720, 725, 730, 735) decouples at least one of the positive and negative terminals (115, 120) from at least one of the external contacts (150, 155) in response to swelling of the cell (110).
Abstract:
A battery pack 12 for powering a device 14 sensitive to input voltage contains a protection switch 28 and a control circuit 26. When the battery pack 12 is charged by a charger 10 and the voltage of the battery pack approaches the maximum safe level of the device 14, the control circuit 26 causes the protection switch 28 to electrically switch open to protect the device 14 from excessive voltage potentially output by the charger. Where the cells 16 are lithium ion cells or a type having a maximum safe voltage, a safety switch 49 is included to interrupt charge current 52 through the cells 16. The safety switch 49 is delayed by resistor/capacitor network 51, 53 so that it switches after the protection switch 28. The safety switch 49 includes a diode 58 to allow the device 14 to remain powered while the safety switch is blocking charge current. Further, diodes 40 and 42 are required to eliminate measurement error of the control circuit 26 if the battery pack 12 is charged through the device contacts 20 and 24.
Abstract:
A rechargeable battery cell (10) has an integral vibrating means. The cell has a positive electrode (14), a negative electrode (16), and an electrolyte (18) disposed between the two electrodes. The electrolyte contains a piezoelectric material (20) that vibrates when subjected to an alternating electric field. In one embodiment, at least one of the electrodes contains a piezoelectric material that functions as a vibrating means when subjected to an alternating electric field. In another embodiment, a piezoelectric material that functions as a vibrating means when subjected to an alternating electric field is attached as part of a current collector (22) to at least one of the electrodes. The piezoelectric material performs an additional function of being an electronic insulator for the purpose of stacking the cells.
Abstract:
A battery pack 12 for powering a device 14 sensitive to input voltage contains a protection switch 28 and a control circuit 26. When the battery pack 12 is charged by a charger 10 and the voltage of the battery pack approaches the maximum safe level of the device 14, the control circuit 26 causes the protection switch 28 to electrically switch open to protect the device 14 from excessive voltage potentially output by the charger. Where the cells 16 are lithium ion cells or a type having a maximum safe voltage, a safety switch 49 is included to interrupt charge current 52 through the cells 16. The safety switch 49 is delayed by resistor/capacitor network 51, 53 so that it switches after the protection switch 28. The safety switch 49 includes a diode 58 to allow the device 14 to remain powered while the safety switch is blocking charge current. Further, diodes 40 and 42 are required to eliminate measurement error of the control circuit 26 if the battery pack 12 is charged through the device contacts 20 and 24.
Abstract:
A battery system (400) for use with portable electronic products which includes protection circuitry for allowing the battery system to be safely recharged in a recharging system. The battery system (400) includes cells (401) and a plurality of controls including an overcharge protection circuit (433) for limiting the amount of current to the cells (401) by a charging network and a thermistor (415) and thermistor control (417) for controlling the state of the thermistor (415) to simulate a high temperature condition allowing the charging network to switch modes and accommodate battery system (400) which does not follow the charging regimen provided by charging system.
Abstract:
A modular battery pack (10) is described having several embodiments. In general, the modular battery pack has a battery cell cartridge (12), a circuit cartridge (14), and a housing (16). In conventional battery packs these three elements are combined into one single unit. The invention modularizes these components such that portions may be reused and shared. This results in a more cost effective power system for a portable electrical or electronic device (40) since, once the battery cell or cells (48) have expired, they can be replaced without having to replace the other components, in particular the circuitry.
Abstract:
A battery pack (12) for powering a device (14) sensitive to input voltage contains a protection switch (28) and a control circuit (26). When the battery pack (12) is charged by a charger (10) and the voltage of the battery pack approaches the maximum safe level of the device (14), the control circuit (26) causes the protection switch (28) to electrically switch open to protect the device (14) from excessive voltage potentially output by the charger. Where the cells (16) are lithium ion cells or a type having a maximum safe voltage, a safety switch (49) is included to interrupt charge current (52) through the cells (16). The safety switch (49) is delayed by resistor/capacitor network (51, 53) so that it switches after the protection switch (28). The safety switch (49) includes a diode (58) to allow the device (14) to remain powered while the safety switch is blocking charge current. Further, diodes (40 and 42) are required to eliminate measurement error of the control circuit (26) if the battery pack (12) is charged through the device contacts (20 and 24).
Abstract:
A rechargeable battery (208) is charged using a charger (202). The charge current provided by charger (202) is a stepped-down pulse where the battery charge current rate change is determined by the rise time of the battery voltage. The charge pulse sequence is repeated after the polarization recovery period is completed. The polarization recovery time of the previous period will determine if the stepped-down pulse has to be modified.
Abstract:
A rechargeable battery cell (10) has an integral vibrating means. The cell has a positive electrode (14), a negative electrode (16), and an electrolyte (18) disposed between the two electrodes. The electrolyte contains a piezoelectric material (20) that vibrates when subjected to an alternating electric field. In one embodiment, at least one of the electrodes contains a piezoelectric material that functions as a vibrating means when subjected to an alternating electric field. In another embodiment, a piezoelectric material that functions as a vibrating means when subjected to an alternating electric field is attached as part of a current collector (22) to at least one of the electrodes. The piezoelectric material performs an additional function of being an electronic insulator for the purpose of stacking the cells.