WIRELESS DOMESTIC TELECOMMUNICATION SYSTEM FOR TRANSMITTING SOUNDS AND DATA

    公开(公告)号:HUT59782A

    公开(公告)日:1992-06-29

    申请号:HU768790

    申请日:1990-11-29

    Applicant: MOTOROLA INC

    Abstract: A wireless in-building telecommunications system for voice and data communications is disclosed having at least one node (101) arranged for linking to the PSTN (151) and at least one digital information source (153, 155, 157, 159) multiplicity of user modules (103) (UM's) linked to the node via a shared RF communications path (107). Each UM is coupled to a voice telephone instrument (127) and to one or more data terminals (165). The UM's communicate with the node by exchanging fast packets via the common RF path (107). The node also includes a fast-packet-switched mechanism controlled by a bandwidth allocating scheme to prevent collisions of packets as they are transmitted between the various units (101, 103) (nodes and/or user modules) that may be accessing the RF path (107). Also disclosed is a method for allocating the required bandwidth to each of the users of the common communications path in a wireless in-building telephone system. The invention provides for the combination of both voice and data in a single switch using a common packet structure. It allows for the dynamic allocation of bandwidth based on system loading. This includes not only bandwidth within the voice or data areas of the frame, but also between the voice and data portions. It also synchronizes the transfer of the data and the allocation of bus bandwidth.

    WIRELESS BUILT- IN TELECOMMUNICATION SYSTEM

    公开(公告)号:CS591090A2

    公开(公告)日:1991-10-15

    申请号:CS591090

    申请日:1990-11-28

    Applicant: MOTOROLA INC

    Abstract: A wireless in-building telecommunications system for voice and data communications is disclosed having at least one node (101) arranged for linking to the PSTN (151) and at least one digital information source (153, 155, 157, 159) multiplicity of user modules (103) (UM's) linked to the node via a shared RF communications path (107). Each UM is coupled to a voice telephone instrument (127) and to one or more data terminals (165). The UM's communicate with the node by exchanging fast packets via the common RF path (107). The node also includes a fast-packet-switched mechanism controlled by a bandwidth allocating scheme to prevent collisions of packets as they are transmitted between the various units (101, 103) (nodes and/or user modules) that may be accessing the RF path (107). Also disclosed is a method for allocating the required bandwidth to each of the users of the common communications path in a wireless in-building telephone system. The invention provides for the combination of both voice and data in a single switch using a common packet structure. It allows for the dynamic allocation of bandwidth based on system loading. This includes not only bandwidth within the voice or data areas of the frame, but also between the voice and data portions. It also synchronizes the transfer of the data and the allocation of bus bandwidth.

    6.
    发明专利
    未知

    公开(公告)号:BR9007841A

    公开(公告)日:1992-09-08

    申请号:BR9007841

    申请日:1990-11-27

    Applicant: MOTOROLA INC

    Abstract: A wireless in-building telecommunications system for voice and data communications is disclosed having at least one node (101) arranged for linking to the PSTN (151) and at least one digital information source (153, 155, 157, 159) multiplicity of user modules (103) (UM's) linked to the node via a shared RF communications path (107). Each UM is coupled to a voice telephone instrument (127) and to one or more data terminals (165). The UM's communicate with the node by exchanging fast packets via the common RF path (107). The node also includes a fast-packet-switched mechanism controlled by a bandwidth allocating scheme to prevent collisions of packets as they are transmitted between the various units (101, 103) (nodes and/or user modules) that may be accessing the RF path (107). Also disclosed is a method for allocating the required bandwidth to each of the users of the common communications path in a wireless in-building telephone system. The invention provides for the combination of both voice and data in a single switch using a common packet structure. It allows for the dynamic allocation of bandwidth based on system loading. This includes not only bandwidth within the voice or data areas of the frame, but also between the voice and data portions. It also synchronizes the transfer of the data and the allocation of bus bandwidth.

    METHOD OF TRANSMITTING IN WIRELESS MANNER SPEECH AND DATA SIGNALS AND TELECOMMUNICATION APPARATUS THEREFOR

    公开(公告)号:PL288017A1

    公开(公告)日:1991-08-26

    申请号:PL28801790

    申请日:1990-11-29

    Applicant: MOTOROLA INC

    Abstract: A wireless in-building telecommunications system for voice and data communications is disclosed having at least one node (101) arranged for linking to the PSTN (151) and at least one digital information source (153, 155, 157, 159) multiplicity of user modules (103) (UM's) linked to the node via a shared RF communications path (107). Each UM is coupled to a voice telephone instrument (127) and to one or more data terminals (165). The UM's communicate with the node by exchanging fast packets via the common RF path (107). The node also includes a fast-packet-switched mechanism controlled by a bandwidth allocating scheme to prevent collisions of packets as they are transmitted between the various units (101, 103) (nodes and/or user modules) that may be accessing the RF path (107). Also disclosed is a method for allocating the required bandwidth to each of the users of the common communications path in a wireless in-building telephone system. The invention provides for the combination of both voice and data in a single switch using a common packet structure. It allows for the dynamic allocation of bandwidth based on system loading. This includes not only bandwidth within the voice or data areas of the frame, but also between the voice and data portions. It also synchronizes the transfer of the data and the allocation of bus bandwidth.

Patent Agency Ranking