Abstract:
A transmitter transmits the desired signal using a continuous duty cycle at transmission rates of less than full rate (FIG. 6 ). The energy used in each power control group is related to the transmission rate. By repeating the power control groups, time division diversity (FIG. 6 ) is provided. In the receiver, the received power control groups are analyzed and compared to several levels of energy thresholds (73, 75, 77, 79). The results of the comparisons are converted into a power control signal (74, 76, 78, 80, 81) and returned to the mobile. The mobiles are capable of selecting the appropriate bit (93) and adjusting their power (94). Alternatively, an indicator of the transmission rate can be forwarded (155) in advance of the frame. The receiver compares a power estimate with the threshold for the transmission rate indicated (166).
Abstract:
A communication system provides wireless communication in a coverage area and includes a base station (100) and a mobile station (290). The base station (100) has a plurality of sectors (210, 220, 230, 240, 250, 260) where a corresponding plurality of pilot signals (212, 222, 232, 242, 252, 262) are transmitted. A sector (210) transmits a forward link signal (211) for communicating to the mobile station (290). The mobile station (290) transmits a reverse link signal (215) and a message signal including a list of a plurality of candidate sectors for a soft hand-off routine. A method and apparatus of determining the candidate list includes measuring reverse link signal (215) which are received at said plurality of sectors. Then, comparing reverse link signal level received at sector (210) to the reverse link signal levels received at all other sectors of said plurality of sectors (210, 220, 230, 240, 250, 260). Finally, the candidate list is determined according to a result of comparing the reverse link signal levels.
Abstract:
In a transceiver in a wireless communications system, data is transmitted fr om the transceiver to subscriber units, wherein each subscriber unit has a requested transmit power and an allocated transmit power, and wherein the allocated transmit power is based upon the requested transmit power. A reque st for an additional power allocation (200) is detected, wherein such additiona l allocation causes a total requested power to exceed a maximum transceiver power (220). In response, allocated transmit power is limited for a minimum number of selected subscriber units (222) needed to reduce a total transceiv er transmit power below the maximum transceiver power (220).
Abstract:
A communication system provides wireless communication in a coverage area and includes a base station (100) and a mobile station (290). The base station (100) has a plurality of sectors (210, 220, 230, 240, 250, 260) where a corresponding plurality of pilot signals (212, 222, 232, 242, 252, 262) are transmitted. A sector (210) transmits a forward link signal (211) for communicating to the mobile station (290). The mobile station (290) transmits a reverse link signal (215) and a message signal including a list of a plurality of candidate sectors for a soft hand-off routine. A method and apparatus of determining the candidate list includes measuring reverse link signal (215) which are received at said plurality of sectors. Then, comparing reverse link signal level received at sector (210) to the reverse link signal levels received at all other sectors of said plurality of sectors (210, 220, 230, 240, 250, 260). Finally, the candidate list is determined according to a result of comparing the reverse link signal levels.
Abstract:
A transmitter transmits the desired signal using a continuous duty cycle at transmission rates of less than full rate (FIG. 6 ). The energy used in each power control group is related to the transmission rate. By repeating the power control groups, time division diversity (FIG. 6 ) is provided. In the receiver, the received power control groups are analyzed and compared to several levels of energy thresholds (73, 75, 77, 79). The results of the comparisons are converted into a power control signal (74, 76, 78, 80, 81) and returned to the mobile. The mobiles are capable of selecting the appropriate bit (93) and adjusting their power (94). Alternatively, an indicator of the transmission rate can be forwarded (155) in advance of the frame. The receiver compares a power estimate with the threshold for the transmission rate indicated (166).
Abstract:
A transmitter transmits the desired signal using a continuous duty cycle at transmission rates of less than full rate (FIG. 6 ). The energy used in each power control group is related to the transmission rate. By repeating the power control groups, time division diversity (FIG. 6 ) is provided. In the receiver, the received power control groups are analyzed and compared to several levels of energy thresholds (73, 75, 77, 79). The results of the comparisons are converted into a power control signal (74, 76, 78, 80, 81) and returned to the mobile. The mobiles are capable of selecting the appropriate bit (93) and adjusting their power (94). Alternatively, an indicator of the transmission rate can be forwarded (155) in advance of the frame. The receiver compares a power estimate with the threshold for the transmission rate indicated (166).
Abstract:
In a transceiver in a wireless communications system, data is transmitted from the transceiver to subscriber units, wherein each subscriber unit has a requested transmit power and an allocated transmit power, and wherein the allocated transmit power is based upon the requested transmit power. A request for an additional power allocation (200) is detected, wherein such additional allocation causes a total requested power to exceed a maximum transceiver power (220). In response, allocated transmit power is limited for a minimum number of selected subscriber units (222) needed to reduce a total transceiver transmit power below the maximum transceiver power (220).
Abstract:
A method 600 of selecting an ARQ method for retransmitting a data frame based on an accumulated signal to noise ratio (SNR) of systematic bits in the data frame at a receiving unit 508. The sending unit 500 tracks the accumulated SNR of systematic bits by using channel SNR measurement reports sent by the receiving unit 508. The method utilizes Chase combining of re-transmitted systematic bits (via Partial incremental redundancy transmissions) until the accumulated SNR of the systematic bits has reached a suitable value, and then switches to sending only parity bits (via Full incremental redundancy) in retransmissions. In addition, the method alters the allocation of resources, such as code power, to provide only that necessary for successful decoding of the transmitted frame. The sending unit 500 informs the receiving unit 508 of the type of transmission, number of the transmission and/or resource allocation associated with the data frame.
Abstract:
Orthogonal transmit diversity is implemented by employing a data splitter (803) to subdivide channel information (801) into at least a first portion of bits (802) and a second portion of bits (804). Each portion is spread with its own Walsh code for eventual transmission to a mobile station via a predetermined carrier frequency. When the number of bits in the first and second portion (802, 804) are small, separate Walsh codes are used to maintain orthogonality. When the number of bits in the first and second portion (802, 804) are relatively large, a time-division multiplex transmission is used to maintain orthogonality. A controller (809) controls the subdivision of the channel information and also an interleaver (308) to further enhance the effects of the diversity transmission. Control information related to the subdivision is transmitted to the mobile station so the channel information can be accurately reconstructed prior to decoding.
Abstract:
In a transceiver in a wireless communications system, data is transmitted from the transceiver to subscriber units, wherein each subscriber unit has a requested transmit power and an allocated transmit power, and wherein the allocated transmit power is based upon the requested transmit power. A request for an additional power allocation is detected, wherein such additional allocation causes a total requested power to exceed a maximum transceiver power. In response, allocated transmit power is limited for a minimum number of selected subscriber units needed to reduce a total transceiver transmit power below the maximum transceiver power.