Abstract:
The electronic component (10) has a die (22) and a terminal (14) coupled to the die (22). The substrate has a first side (20) and a second side (82) and a passage (26) therethrough. The terminal (14) is in communication with the first side (20) and the die (22) is disposed within the passage (26). The apparatus includes a cover (16) which encloses the die (22) and a portion of the terminal (14), and has a fixed portion (28) and a removable portion. The fixed portion (28) includes a connection region coupled to the terminal (14) and an extension region disposed within the passage (26). The extension region has a surface that is substantially coplanar with the second side (82). There is a space (32) between the extension region and the substrate (18). An adhesive (34) is disposed on the surface of the extension region, extending into the space (32). A sealing frame (36) overlaps the space (32) and is in communication with the adhesive (34) and the second side (82).
Abstract:
The electronic component (10) has a die (22) and a terminal (14) coupled to the die (22). The substrate has a first side (20) and a second side (82) and a passage (26) therethrough. The terminal (14) is in communication with the first side (20) and the die (22) is disposed within the passage (26). The apparatus includes a cover (16) which encloses the die (22) and a portion of the terminal (14), and has a fixed portion (28) and a removable portion. The fixed portion (28) includes a connection region coupled to the terminal (14) and an extension region disposed within the passage (26). The extension regi on has a surface that is substantially coplanar with the second side (82). Ther e is a space (32) between the extension region and the substrate (18). An adhesive (34) is disposed on the surface of the extension region, extending into the space (32). A sealing frame (36) overlaps the space (32) and is in communication with the adhesive (34) and the second side (82).
Abstract:
According to an aspect of the present invention, the foregoing needs are addressed by an apparatus for cooling a heat source (10), including a carrier plate (19) having a channel (28, 38) therein. The channel has an inlet end (30) and an outlet end (31). A cooling region (46) is disposed in the carrier plate and is in communication with the channel. The cooling region is sized to be disposed proximate the heat source. A member (40) having an orifice (42) therein is disposed in the cooling region. A ratio between a thickness of the member and a width of the orifice is less than 0.9.
Abstract:
The electronic component (10) has a die (22) and a terminal (14) coupled to the die (22). The substrate has a first side (20) and a second side (82) and a passage (26) therethrough. The terminal (14) is in communication with the first side (20) and the die (22) is disposed within the passage (26). The apparatus includes a cover (16) which encloses the die (22) and a portion of the terminal (14), and has a fixed portion (28) and a removable portion. The fixed portion (28) includes a connection region coupled to the terminal (14) and an extension region disposed within the passage (26). The extension region has a surface that is substantially coplanar with the second side (82). There is a space (32) between the extension region and the substrate (18). An adhesive (34) is disposed on the surface of the extension region, extending into the space (32). A sealing frame (36) overlaps the space (32) and is in communication with the adhesive (34) and the second side (82).