Abstract:
The organic MEMS according to the present invention comprises a polymeric substrate comprising a substrate surface including a first region and a second region. A polymer coating is applied to the first region to provide a coating surface that is spaced apart from the substrate surface. A terminal is disposed on the second region. A metallic trace is affixed to the coating surface such that the metallic trace forms a flexible extension over the second region. The extension has a rest position where the extension is spaced apart from the terminal, and a flexed position where the extension is disposed towards the terminal. An actuator is used to provide an electric field to deflect the extension from the rest position to the flexed position. By changing the spacing between the extension and the terminal, it is possible to change the electrical condition provided by the MEMS.
Abstract:
A wafer (10) having integrated circuit elements formed therein is thinned and a first carrier (41) is adhered thereto. The first carrier (41) facilitates handling of the thinned wafer (30). A second carrier (51) is then adhered as well and the various integrated circuits are singulated to yield a plurality of thinned die (81). Once the thinned die is mounted to a desired substrate (91), the first carrier (41) is readily removed. In one embodiment, the first carrier (41) has an adhesive that becomes less adherent when exposed to a predetermined stimulus (such as a given temperature range or a given frequency range of photonic energy). Such thinned die (or modules containing such die) are readily amenable to stacking in order to achieve significantly increased circuit densities.
Abstract:
High quality epitaxial layers of monocrystalline materials (26) can be grown overlying monocrystalline substrates (22) such as large silicon wafers by forming a compliant substrate for growing the monocrystalline layers. An accommodating buffer layer (24) comprises a layer of monocrystalline oxide spaced apart from a silicon wafer by an amorphous interface layer (28) of silicon oxide. The amorphous interface layer dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. The accommodating buffer layer is lattice matched to both the underlying silicon wafer and the overlying monocrystalline material layer. Any lattice mismatch between the accommodating buffer layer and the underlying silicon substrate is taken care of by the amorphous interface layer. In addition, formation of a compliant substrate may include utilizing surfactant enhanced epitaxy, epitaxial growth of single crystal silicon onto single crystal oxide, and epitaxial growth of Zintl phase materials.
Abstract:
A capacitor (14) is disposed in, for example, a ferrite shell (12). A winding (20) is formed around the shell, thereby providing an inductive component. Additional windings may be provided to form a transformer. In combining the two components into a unitary package, a space savings is realized, and assembly efficiency is increased.
Abstract:
The organic MEMS according to the present invention comprises a polymeric substrate (12) comprising a substrate surface (16) including a first region (2) and a second region (24). A polymer coating (26) is applied to the first region to provide a coating surface that is spaced apart from the substrate surface. A terminal (18) is disposed in the second region. A metallic trace (28) is affixed to the coating surface such that the metallic trace forms a flexible extension over the second region. The extension has a rest position where the extension is spaced apart from the terminal, and a flexed position where the extension is disposed toward the terminal. An actuator (20) is used to provide an electric field to deflect the extension from the rest position to the flexed position. By changing the spacing between the extension and the terminal, it is possible to change the electrical condition provided by the MEMS.
Abstract:
High quality epitaxial layers of monocrystalline materials (26) can be grown overlying monocrystalline substrates (22) such as large silicon wafers by forming a compliant substrate for growing the monocrystalline layers. An accommodating buffer layer (24) comprises a layer of monocrystalline oxide spaced apart from a silicon wafer by an amorphous interface layer (28) of silicon oxide. The amorphous interface layer dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. The accommodating buffer layer is lattice matched to both the underlying silicon wafer and the overlying monocrystalline material layer. Any lattice mismatch between the accommodating buffer layer and the underlying silicon substrate is taken care of by the amorphous interface layer. In addition, formation of a compliant substrate may include utilizing surfactant enhanced epitaxy, epitaxial growth of single crystal silicon onto single crystal oxide, and epitaxial growth of Zintl phase materials.
Abstract:
An electrochemical charge storage device (60) having two asymmetric inorganic electrodes (30, 36) is provided. The device may be fabricated using a bipolar plate which acts as both the conductor, and as the substrate upon which the active electrodes are formed. The bipolar plate may further be adapted to act as one of the active electrodes by activating a portion of the bipolar plate material.