Abstract:
To address the need for a power modulator that can efficiently operate within a wideband, high-speed communication system, a method and apparatus for power modulation is provided herein. In accordance with the preferred embodiment of the present invention an envelope reference signal is filtered in such a way that the bandwidth is reduced while keeping the instantaneous level of the filtered signal is greater than the unfiltered envelope level. Because the bandwidth of the envelope signal is reduced, efficient operation of the switching modulator can be achieved within wideband, high-speed communication systems.
Abstract:
A power amplifier circuit for receiving a variable envelope input signal and for producing an amplified output signal is provided. The power amplifier circuit includes an envelope approximation circuit, an envelope amplifier circuit, a phasor approximation circuit, a quadrature modulation circuit, and a power amplifier. The envelope approximation circuit receives the variable envelope input signal and produces a bandlimited estimated envelope signal, corresponding to the amplitude of the variable envelope input signal. The bandlimited estimated envelope signal is then amplified by an envelope amplifier circuit. The amplified envelope signal is then coupled to the supply input of the power amplifer. The phasor approximation circuit receives the variable envelope input signal and produces a bandlimited estimated phasor signal. The quadrature modulation circuit receives the estimated phase signal and produces a modulated phase signal. The modulated phase signal is then coupled to the signal input of the power amplifier. The power amplifier then produces an amplified output signal.
Abstract:
A low power regenerative feedback device (301) and method automatically increases bias current during positive large-signal slewing, enabling output to change faster. The device includes a voltage transforming unit (302), adaptive regenerative feedback circuitry (304) and an output stage (309). When the device is not in a positive slew, bias currents are unchanged, providing a low standby current. Since regenerative feedback is internal and automatic to the device, current is increased only for the device driving an active column of an LCD panel. Thus, the present invention is power efficient. In addition, the AC response of the device is preserved because the device utilizes a regenerative feedback circuit (304) that does not add appreciable excess phase shift. The device achieves an output that switches readily from positive supply to negative supply.
Abstract:
A low power regenerative feedback device (301) and method automatically increases bias current during positive large-signal slewing, enabling output to change faster. The device includes a voltage transforming unit (302), adaptive regenerative feedback circuitry (304) and an output stage (309). When the device is not in a positive slew, bias currents are unchanged, providing a low standby current. Since regenerative feedback is internal and automatic to the device, current is increased only for the device driving an active column of an LCD panel. Thus, the present invention is power efficient. In addition, the AC response of the device is preserved because the device utilizes a regenerative feedback circuit (304) that does not add appreciable excess phase shift. The device achieves an output that switches readily from positive supply to negative supply.
Abstract:
A power amplifier circuit for receiving a variable envelope input signal and for producing an amplified output signal is provided. The power amplifier circuit includes an envelope approximation circuit, an envelope amplifier circuit, a phasor approximation circuit, a quadrature modulation circuit, and a power amplifier. The envelope approximation circuit receives the variable envelope input signal and produces a bandlimited estimated envelope signal, corresponding to the amplitude of the variable envelope input signal. The bandlimited estimated envelope signal is then amplified by an envelope amplifier circuit. The amplified envelope signal is then coupled to the supply input of the power amplifer. The phasor approximation circuit receives the variable envelope input signal and produces a bandlimited estimated phasor signal. The quadrature modulation circuit receives the estimated phase signal and produces a modulated phase signal. The modulated phase signal is then coupled to the signal input of the power amplifier. The power amplifier then produces an amplified output signal.