Abstract:
In a CDMA communication system (100) capable of communicating between a receiver (20) and a transmitter (10) direct sequence spread spectrum communication signals (30), a system and method for synchronizing receiver bit timing and transmitter timing. Transmitter (10) transmits a training bit sequence (31) followed by a transmitter bit timing sequence (33). The receiver (20) adaptively determines a representation of a despreading chip sequence using a tapped delay line equalizer (400). Receiver bit timing offset is determined based on the representation of the despreading chip sequence and the transmitter bit timing sequence (33).
Abstract:
A code division multiple access (CDMA) communication system (10) for reuse of available spreading codes includes a first communication device (100) and a second communication device (106). The first and second communication devices (100, 106) are capable of identifying spreading codes and operating frequencies that are optimum for their respective radios. The identity of the optimum spreading code and the frequency of the optimum frequency is communicated from one communication device (100) to another (106), hence allowing the two devices to communicate with each other using their respective optimum codes and frequencies. These codes and frequencies may be periodically updated to provide reusability of codes. By dynamically updating codes and frequencies without the use of a central station, the efficiency and reusability of codes in the CDMA system (10) is significantly enhanced.
Abstract:
In an adaptive CDMA receiver (20), a Direct Sequence Spread Spectrum (DS-SS) received signal and a reference signal are equalized by minimizing the error between them. The received signal includes a desired DS-SS communication signal comprising binary bits coded with spreading chip sequences. The received signal is sampled at a chip rate to produce sampled received signals which are correlated with each other. The received samples are partially de-correlated by employing an orthogonal transformation algorithm to provide de-correlated subspace elements and correlated subspace elements. The adaptive equalization process is based on de-correlated and correlated subspace elements. Tap coefficients of a despreading equalizer (400) are updated for the de-correlated and correlated elements individually and collectively, respectively. This selective updating of tap coefficients provides for fast convergence and minimum error.
Abstract:
A communication device (100) includes first (104) and second (108) mixers for producing first in-phase and quadrature phase component, respectively. Additional zero-crossing points are efficiently generated by adding and subtracting the in-phase and quadrature components in a summer (116) and a subtractor (118), respectively. The additional zero-crossing points are generated by the formation of second in-phase and quadrature components. A zero-crossing detector (128) is used for detecting zero crossings using the first and second in-phase components and the first and second quadrature phase components.
Abstract:
In an adaptive CDMA receiver (20), a Direct Sequence Spread Spectrum (DS-SS) received signal and a reference signal are equalized by minimizing the error between them. The received signal includes a desired DS-SS communication signal comprising binary bits coded with spreading chip sequences. The received signal is sampled at a chip rate to produce sampled received signals which are correlated with each other. The received samples are partially de-correlated by employing an orthogonal transformation algorithm to provide de-correlated subspace elements and correlated subspace elements. The adaptive equalization process is based on de-correlated and correlated subspace elements. Tap coefficients of a despreading equalizer (400) are updated for the de-correlated and correlated elements individually and collectively, respectively. This selective updating of tap coefficients provides for fast convergence and minimum error.
Abstract:
A communication device (100) includes mixers (104 and 108) which mix a local oscillator (112, 106) with a received signal to produce in-phase (i) and quadrature (q) components. The direction of the phase of the signal is detected as it crosses the i and q axes. The direction of the phase rotation is kept track of by a bi-directional counter (123) in order to demodulate multi-level digital signals. A positive rotation increments the bi-directional counter (123). Conversely, a negative direction decrements the counter (123). The final count of the counter (123) is used by a decision device (124) to establish the content of the received information signal.
Abstract:
A communication device (100) includes mixers (104 and 108) which mix a local oscillator (112, 106) with a received signal to produce in-phase (i) and quadrature (q) components. The direction of the phase of the signal is detected at the i and q zero crossings. Next, the speed with which the phase rotation angle travels from one zero crossing to another is monitored via a controller (126). The controller (126) manipulates the speed and the direction of the phase rotation angle in order to establish the contents of the received information signal.
Abstract:
In an adaptive CDMA receiver (20), a DS-SS received signal and a reference signal are equalized by minimizing the error between them. The received signal includes a desired DS-SS communication signal comprising binary bits coded with spreading chip sequences. The received signal is sampled at a chip rate to produce sampled received signals which are correlated with each other. The received samples are de-correlated by employing an orthogonal transformation algorithm to provide de-correlated elements corresponding to the received samples. The equalization process is accelerated by minimizing the error based on the de-correlated elements.