Abstract:
A receiver (900) employs a method (1100) for identifying a particular coded communication signal (301) from received coded communication signals (303, 305). The receiver (900) comprises a memory device (905) and a processor (907). The memory device (905) stores information contained in the received coded communication signals (303, 305) during multiple modulation symbol time intervals (210) to produce stored information. The processor (907) then searches the stored information to identify the particular coded communication signal (301).
Abstract:
A receiver (900) employs a method (1100) for identifying a particular coded communication signal (301) from received coded communication signals (303, 305). The receiver (900) comprises a memory device (905) and a processor (907). The memory device (905) stores information contained in the received coded communication signals (303, 305) during multiple modulation symbol time intervals (210) to produce stored information. The processor (907) then searches the stored information to identify the particular coded communication signal (301).
Abstract:
A receiver (900) employs a method (1100) for identifying a particular coded communication signal (301) from received coded communication signals (303, 305). The receiver (900) comprises a memory device (905) and a processor (907). The memory device (905) stores information contained in the received coded communication signals (303, 305) during multiple modulation symbol time intervals (210) to produce stored information. The processor (907) then searches the stored information to identify the particular coded communication signal (301).
Abstract:
A communication system receiver (60) sorts through potential Walsh indexes (112) and determines survivors for use in subsequent processing (66). The sort process (158) is implemented in parallel with the subsequent processing (66) so that large amounts of memory (142) to implement a store/sort are eliminated. The communication system receiver (60) implements the sorting operation (158) in a small number of cycles (155), thereby conserving cycles (155) which could be beneficially utilized for other tasks as required. The sorting operation (158) also lends itself well to a practical implementation from a communication system receiver (60) design perspective.
Abstract:
A method and receiver for demodulating a DS/CDMA signal increases a receiver's (60) sensitivity and as a result, the system capacity of a DS/CDMA cellular communications systems. A Reduced State Sequence Estimator (RSSE) (68) finds a path (210) with the highest energy. An efficient method and apparatus for determining the path energies (212) selects a new path (210) to differ from a previous path (210) by a single reduced state (200). A difference (306) between an I and Q magnitude of the new and omitted reduced state (200) is computed (304). This difference is added to the previous path's total I (308) and Q magnitude, to compute the new path's I and Q magnitude. These I and Q magnitudes are used to compute a path energy (322) and the highest path's energy (326) is used to select the best path for decoding (70).