Abstract:
The electronic component (10) has a die (22) and a terminal (14) coupled to the die (22). The substrate has a first side (20) and a second side (82) and a passage (26) therethrough. The terminal (14) is in communication with the first side (20) and the die (22) is disposed within the passage (26). The apparatus includes a cover (16) which encloses the die (22) and a portion of the terminal (14), and has a fixed portion (28) and a removable portion. The fixed portion (28) includes a connection region coupled to the terminal (14) and an extension region disposed within the passage (26). The extension region has a surface that is substantially coplanar with the second side (82). There is a space (32) between the extension region and the substrate (18). An adhesive (34) is disposed on the surface of the extension region, extending into the space (32). A sealing frame (36) overlaps the space (32) and is in communication with the adhesive (34) and the second side (82).
Abstract:
The apparatus (70) includes a substantially planar plate (72) having a first side (74) and a second side (76). A plurality of substantially planar fluid distributing manifolds (82) are formed in the first side of the plate, each fluid distributing manifold having a surface (84) recessed relative to at least a portion of the first side of the plate. A nozzle housing (86) is located in the surface of each fluid distributing manifold. The nozzle housing is adapted to receive a nozzle and has a receptacle end (88) and a spray end (70). The spray end has an aperture (92), and is in communication with the second side of the plate. The receptacle end is in communication with the surface of one of the plurality of fluid distributing manifolds.
Abstract:
The apparatus includes a cover (10) having a first surface (12) and a second surface opposed to the first surface (12). The second surface has an edge (16) defining a perimeter and a recessed region (18). A wall (20) is in communication with the recess region (18), the wall (20) and at least a portion of the edge (16) define a compartment (22). An electromagnetic interference-attenuating material is disposed in the compartment (22), and a fluid distributing manifold is disposed in the cover (10).
Abstract:
The apparatus includes a plate (10) having a first layer (12) and a second layer (14) opposed to the first layer (12). A first fluid distributing conduit (28) is disposed in the first layer (12) and a second fluid distributing conduit (28) is disposed in the second layer (14). A first nozzle housing (30) having a first aperture (36) is disposed in the first fluid distributing conduit (28) and a second nozzle housing (30) having a second aperture (36) is disposed in the second fluid distributing conduit (28).
Abstract:
The electronic component (10) has a die (22) and a terminal (14) coupled to the die (22). The substrate has a first side (20) and a second side (82) and a passage (26) therethrough. The terminal (14) is in communication with the first side (20) and the die (22) is disposed within the passage (26). The apparatus includes a cover (16) which encloses the die (22) and a portion of the terminal (14), and has a fixed portion (28) and a removable portion. The fixed portion (28) includes a connection region coupled to the terminal (14) and an extension region disposed within the passage (26). The extension region has a surface that is substantially coplanar with the second side (82). There is a space (32) between the extension region and the substrate (18). An adhesive (34) is disposed on the surface of the extension region, extending into the space (32). A sealing frame (36) overlaps the space (32) and is in communication with the adhesive (34) and the second side (82).
Abstract:
The apparatus (70) includes a substantially planar plate (72) having a first side (74) and a second side (76). A plurality of substantially planar fluid distributing manifolds (82) are formed in the first side of the plate, each fluid distributing manifold having a surface (84) recessed relative to at least a portion of the first side of the plate. A nozzle housing (86) is located in the surface of each fluid distributing manifold. The nozzle housing is adapted to receive a nozzle and has a receptacle end (88) and a spray end (70). The spray end has an aperture (92), and is in communication with the second side of the plate. The receptacle end is in communication with the surface of one of the plurality of fluid distributing manifolds.
Abstract:
The apparatus includes a plate (10) having a first layer (12) and a second layer (14) opposed to the first layer (12). A first fluid distributing conduit (28) is disposed in the first layer (12) and a second fluid distributing conduit (28) is disposed in the second layer (14). A first nozzle housing (30) having a first aperture (36) is disposed in the first fluid distributing conduit (28) and a second nozzle housing (30) having a second aperture (36) is disposed in the second fluid distributing conduit (28).
Abstract:
The electronic component (10) has a die (22) and a terminal (14) coupled to the die (22). The substrate has a first side (20) and a second side (82) and a passage (26) therethrough. The terminal (14) is in communication with the first side (20) and the die (22) is disposed within the passage (26). The apparatus includes a cover (16) which encloses the die (22) and a portion of the terminal (14), and has a fixed portion (28) and a removable portion. The fixed portion (28) includes a connection region coupled to the terminal (14) and an extension region disposed within the passage (26). The extension region has a surface that is substantially coplanar with the second side (82). There is a space (32) between the extension region and the substrate (18). An adhesive (34) is disposed on the surface of the extension region, extending into the space (32). A sealing frame (36) overlaps the space (32) and is in communication with the adhesive (34) and the second side (82).
Abstract:
The apparatus includes a cover (10) having a first surface (12) and a second surface opposed to the first surface (12). The second surface has an edge (16) defining a perimeter and a recessed region (18). A wall (20) is in communication with the recess region (18), the wall (20) and at least a portion of the edge (16) define a compartment (22). An electromagnetic interference-attenuating material is disposed in the compartment (22), and a fluid distributing manifold is disposed in the cover (10).