-
1.
公开(公告)号:US20240005381A1
公开(公告)日:2024-01-04
申请号:US17855788
申请日:2022-06-30
Applicant: Maplebear Inc. (dba Instacart)
Inventor: Sonali Deepak Chhabria , Xiangyu Wang , Aman Jain , Ganesh Krishnan , Trace Levinson , Jian Wang
CPC classification number: G06Q30/0635 , G06Q10/06311 , G06Q10/087 , G01C21/3407
Abstract: An online concierge system includes a marketplace automation engine for setting various control parameters affecting marketplace operation. The marketplace automation engine applies a hyperparameter learning model to the marketplace state data to predict a set of hyperparameters affecting a set of respective parameterized control decision models. The hyperparameter learning model is trained on historical marketplace state data and a configured outcome objective for the online concierge system. The marketplace automation engine independently applies the set of parameterized control decision models to the marketplace state data using the hyperparameters to generate a respective set of control parameters affecting marketplace operation of the online concierge system. The marketplace automation engine applies the respective set of control parameters to operation of the online concierge system.
-
公开(公告)号:US20230049669A1
公开(公告)日:2023-02-16
申请号:US17403400
申请日:2021-08-16
Applicant: Maplebear Inc. (dba Instacart)
Inventor: Wa Yuan , Ganesh Krishnan , Qianyi Hu , Aishwarya Balachander , George Ruan , Soren Zeliger , Mike Freimer , Aman Jain
Abstract: An online concierge system trains a machine learning conversion model that predicts a probability of receiving an order from a user when the user accesses the online concierge system. The conversion model predicts the probability of receiving the order based on a set of input features that include price and availability information. For each access to the online concierge system, the online concierge system applies the conversion model to a current price and availability and to an optimal price availability. The online concierge system generates a metric as the difference between the two predicted probabilities of receiving an order.
-
公开(公告)号:US20230351279A1
公开(公告)日:2023-11-02
申请号:US17731810
申请日:2022-04-28
Applicant: Maplebear Inc. (dba Instacart)
Inventor: Soren Zeliger , Aman Jain , Zhaoyu Kou , Ji Chen , Trace Levinson , Ganesh Krishnan
IPC: G06Q10/06
CPC classification number: G06Q10/063116 , G06Q10/04
Abstract: An online concierge system assigns shoppers to fulfill orders from users. To allocate shoppers, the online concierge system predicts future supply and demand for the shoppers' services for different time windows. To forecast a supply of shoppers, the online concierge system trains a machine learning model that estimates future supply based on access to a shopper mobile application through which the shoppers obtain new assignments by shoppers. The online concierge system also forecasts future orders. The online concierge system estimates a supply gap in a future time period by selecting a target time to accept for shoppers to accept orders and determining a corresponding ratio of number of shoppers and number of orders. The online concierge system may adjust a number of shoppers allocated to the future time period to achieve the determined ratio number of shoppers and number of orders.
-
公开(公告)号:US20230153847A1
公开(公告)日:2023-05-18
申请号:US18149646
申请日:2023-01-03
Applicant: Maplebear Inc. (dba Instacart)
Inventor: Wa Yuan , Ganesh Krishnan , Qianyi Hu , Aishwarya Balachander , George Ruan , Soren Zeliger , Mike Freimer , Aman Jain
IPC: G06Q30/0202 , G06N3/084 , G06Q30/0201 , G06Q30/0601 , G06Q10/087 , G06Q10/0631
CPC classification number: G06Q30/0202 , G06N3/084 , G06Q30/0201 , G06Q30/0633 , G06Q10/087 , G06Q30/0607 , G06Q10/06312
Abstract: An online concierge system trains a machine learning conversion model that predicts a probability of receiving an order from a user when the user accesses the online concierge system. The conversion model predicts the probability of receiving the order based on a set of input features that include price and availability information. For each access to the online concierge system, the online concierge system applies the conversion model to a current price and availability and to an optimal price availability. The online concierge system generates a metric as the difference between the two predicted probabilities of receiving an order.
-
公开(公告)号:US20240420037A1
公开(公告)日:2024-12-19
申请号:US18210976
申请日:2023-06-16
Applicant: Maplebear Inc. (dba Instacart)
Inventor: Zi Wang , Houtao Deng , Xiangyu Wang , Ganesh Krishnan , Aman Jain
IPC: G06Q10/04 , G06Q10/083 , G06Q30/0601
Abstract: Embodiments relate to determining an availability of a service option for delivery of an order placed with an online system. The online system receives an order placed with the online system. The online system accesses a computer model trained to predict a value of metric for an order placed with the online system. The online system applies the computer model to predict the value of the metric for the order. The online system determines which service option of a plurality of service options of the online system is available for delivery of the order, based at least in part on the predicted value of the metric and a threshold. The online system causes the device of the user to display an availability of the determined service option for delivery of the order.
-
公开(公告)号:US20240104458A1
公开(公告)日:2024-03-28
申请号:US17955407
申请日:2022-09-28
Applicant: Maplebear Inc. (dba Instacart)
Inventor: Wa Yuan , Jae Cho , Yijia Chen , Houtao Deng , Soren Zeliger , Aman Jain , Jian Wang , Ji Chen
CPC classification number: G06Q10/063116 , G06N5/022 , G06Q10/06393 , G06Q30/0637
Abstract: An online concierge system determines a quantity of a resource available in a timeslot to fulfill orders during the timeslot. The orders include immediate orders placed during the timeslot and scheduled orders that are scheduled for fulfillment during the timeslot. The online concierge system applies the quantity of the resource to a machine learning model to produce a predicted relationship between a value of a fulfillment metric and an allocation of the quantity of the resource reserved for immediate orders. The online concierge system determines, based on the predicted relationship, an expected optimal allocation of the quantity of the resource that maximizes the fulfillment metric. The online concierge system reserves the expected optimal allocation of the quantity of the resource for immediate orders.
-
公开(公告)号:US20240070605A1
公开(公告)日:2024-02-29
申请号:US17897045
申请日:2022-08-26
Applicant: Maplebear Inc. (dba Instacart)
Inventor: Shuai Wang , Zi Wang , Ganesh Krishnan , Houtao Deng , Aman Jain , Jian Wang
CPC classification number: G06Q10/0838 , G06N5/022 , G06Q10/06393 , G06Q30/0617
Abstract: An online concierge system provides arrival prediction services for a user placing an order to be retrieved by a shopper. An order may have a predicted arrival time predicted by a model that may err under some conditions. To reduce the likelihood of providing the predicted arrival time (and related services) when the arrival time may be incorrect, the prediction model and related services are throttled (e.g., selectively provided) based on one or more predicted delivery metrics, which may include a time to accept the order by a shopper and a predicted portion of late orders that will be delivered past the respective predicted arrival times. The predicted delivery metrics are compared with thresholds and the result of the comparison used to selectively provide, or not provide, the predicted delivery services.
-
公开(公告)号:US20230196442A1
公开(公告)日:2023-06-22
申请号:US17556936
申请日:2021-12-20
Applicant: Maplebear Inc. (dba Instacart)
Inventor: Trace Levinson , Aman Jain , Ji Chen , Andrew Kephart
IPC: G06Q30/06
CPC classification number: G06Q30/0635
Abstract: An online concierge system allocates shoppers to different geographic regions at different times to fulfill orders received from users. The online concierge system uses different methods for adjusting allocation of shoppers to geographic regions, such as obtaining new shoppers or providing incentives to additional shoppers, based on estimated numbers of orders identifying different geographic regions. To account for costs to the online concierge system for allocating shoppers to geographic regions, the online concierge system trains multiple machine learned models to predict different efficiency metrics for methods for adjusting shopper allocation. Discrete samples are obtained from each efficiency metric, and samples that do not satisfy one or more constraints removed. From the remaining samples, a combination of samples for different methods for adjusting shopper allocation is selected to optimize a value to the online concierge system based on one or more criteria.
-
公开(公告)号:US20220343395A1
公开(公告)日:2022-10-27
申请号:US17238217
申请日:2021-04-23
Applicant: Maplebear, Inc.(dba Instacart)
Inventor: Amy Luong , Michael Righi , Graham Adeson , Ross Stuart Williams , Aman Jain , Radhika Anand , Ganesh Krishnan
IPC: G06Q30/06
Abstract: For each retailer in the geographic region, an online system predicts a number of orders placed at the retailer and a capacity to fulfill orders during a forecast time period. The capacity of the retailer is predicted based on a number of pickers expected to be available to the retailer during the forecast time period. The online system determines demand for the services of a picker at the retailer based on a comparison of the predicted number of orders and the predicted capacity to fulfill those orders. The online system displays a user interactive map of the geographic region to the picker. The map displays a pin at the location of each retailer in the geographic region, which describes the categorization determined for the retailer. The picker selects a pin, which causes the user interactive map to display a notification characterizing the demand for services at the retailer.
-
公开(公告)号:US20240403812A1
公开(公告)日:2024-12-05
申请号:US18203578
申请日:2023-05-30
Applicant: Maplebear Inc. (dba Instacart)
Inventor: Liang Chen , Xiangyu Wang , Houtao Deng , Ganesh Krishnan , Kevin Charles Ryan , Aman Jain , Jian Wang
IPC: G06Q10/0834 , G06Q10/083 , G06Q10/0833 , G06Q30/0601
Abstract: An online concierge system generates a set of candidate estimated times of arrival (ETAs) for delivery of a set of items being purchased by a user. Each candidate ETA is scored by using a machine-learned model to estimate values for different criteria of interest, such as likelihood of acceptance of the ETA, cost of delivery of the items to the user, and the like. The values for the different criteria may be combined to generate the overall score for a candidate ETA. One or more of the highest-scoring ETAs are selected and provided to the user, who may then approve one of the ETAs for use with delivery of the user's set of items.
-
-
-
-
-
-
-
-
-