Method and System for Quality Assurance and Control of Additive Manufacturing Process

    公开(公告)号:US20210078076A1

    公开(公告)日:2021-03-18

    申请号:US16611897

    申请日:2018-05-10

    Abstract: An additive manufacturing system and method is provided for fabricating 3D objects (16) from successive layers (14) of material. The additive manufacturing system (10) has an energy projection assembly (20) for inputting energy (22) into a specified area within the layer (18) to consolidate the material; a plurality of image sensors (30, 32, 34), each of the image sensors having a corresponding field of view (35, 40, 42) covering at least part of the layer (18) of material, such that each of the fields of view at least partially overlap with the field of view of at least one other of the image sensors; and an image processor (56) to capture image data from each of the image sensors (30, 32, 34). The image processor (56) controls exposure times for each of the image sensors (30, 32, 34) and combines the image data from the image sensors to provide a single, spatially resolved image of the energy being input throughout the specified area for each layer (14) of material respectively for comparison against threshold data values to locate potential consolidation defects in the specified area.

    Method and system for quality assurance and control of additive manufacturing process

    公开(公告)号:US11602790B2

    公开(公告)日:2023-03-14

    申请号:US16611897

    申请日:2018-05-10

    Abstract: An additive manufacturing system and method is provided for fabricating 3D objects (16) from successive layers (14) of material. The additive manufacturing system (10) has an energy projection assembly (20) for inputting energy (22) into a specified area within the layer (18) to consolidate the material; a plurality of image sensors (30, 32, 34), each of the image sensors having a corresponding field of view (35, 40, 42) covering at least part of the layer (18) of material, such that each of the fields of view at least partially overlap with the field of view of at least one other of the image sensors; and an image processor (56) to capture image data from each of the image sensors (30, 32, 34). The image processor (56) controls exposure times for each of the image sensors (30, 32, 34) and combines the image data from the image sensors to provide a single, spatially resolved image of the energy being input throughout the specified area for each layer (14) of material respectively for comparison against threshold data values to locate potential consolidation defects in the specified area.

Patent Agency Ranking