Abstract:
Un systeme de traitement de donnees (10) utilise une commutation par paquet de diffusion et possede une pluralite de sous-systemes (24) et un bus de systemes (16, 18, 18A, 20, 20A) assurant la liaison avec les sous-systemes (24). Les sous-systemes (24) sont groupes a l'interieur de stations (12), chacune desquelles etant contenue dans une armoire d'ordinateur. Le bus de systemes comprend un coupleur en etoile (16), une premiere et une deuxieme lignes exterieures de transmission (18, 20) reliant chaque station (12) au coupleur en etoile (16), et une premiere et une deuxieme lignes interieures de transmission (18A, 20A) a l'interieur de chaque station (12) qui sont couplees a la premiere et a la deuxieme lignes exterieures de transmission (18, 20). Les sous-systemes (24) a l'interieur de chaque station (12) sont couples chacun a la premiere et la deuxieme lignes interieures de transmission (18A, 20A) par un interface de bus de systemes (28). Chaque sous-systeme possede une memoire locale (351) comprenant une zone (350) reservee a un canal pour le stockage d'informations en-tete de messages destines a etre copies par le sous-systeme en question. Des circuits DMA (140) dans chaque interface de bus de systemes (28) reglent le fonctionnement de la zone reservee (350) dans le sous-systeme. Une pluralite de messages peut etre recue par un sous-systeme et stockee dans la zone reservee associee (350) sans interruption du processeur.
Abstract:
Systeme de traitement de donnees (10) utilisant une commutation par paquet de diffusion et ayant une pluralite de sous-systemes (24) et un bus de systeme (16, 18, 18A, 20, 20A) pour mettre en liaison les sous-systemes (24). Les sous-systemes (24) sont groupes dans des stations (12) qui sont chacune d'elles enfermees par une armoire d'ordinateur. Le bus du systeme comprend un coupleur en etoile (16), une premiere et une seconde lignes de transmission externe (18, 20) connectant chaque station (12) au coupleur en etoile (16), et une premiere et une seconde lignes de transmission interne (18A, 20A) dans chaque station (12) qui sont couplees a la premiere et a la seconde lignes de transmission externe (18, 20). Les sous-systemes (24) dans chaque station (12) sont chacun d'eux couple a la premiere et a la seconde lignes de transmission interne (18A, 20A) par une interface du bus du systeme (28). L'interface du bus du systeme (28) controle le bus du systeme pour une condition d'inactivite, et envoie un message depuis son sous-systeme au bus du systeme seulement lorsqu'elle detecte une condition d'inactivite sur le bus du systeme. Le systeme (10) est facilement extensible en connectant des sous-systemes supplementaires aux lignes de transmission interne (18A, 20A), sans avoir besoin d'un coupleur en etoile ayant un nombre accru de points de connexion.
Abstract:
A data processing system includes a plurality of stations (412), first and second star couplers (416A, 416B) and first and second pairs of transmission lines (414A, 414B) associated with each station (412). The first pair of transmission lines (414A) is connected between its associated station (412) and the first star coupler (416A) and the second pair of transmission lines (414B) is connected between its associated station (412) and the second star coupler (416B). Each pair of transmission lines includes a first transmission line (418A, 418B) for carrying signals from its associated station (412) and a second transmission line (420A, 420B) for carrying signals to its associated station (412). Each station (412) includes a plurality of subsystems (424A, 424B, 424C), coupled by respective interface circuits (428) to both pairs of transmission lines. The system provides reduced transmission interference and high reliability. The star couplers are preferably optical but may be electrical or magnetic star couplers.
Abstract:
A data processing system (10) includes a plurality of subsystems coupled via respective interface circuits (28) to a pair of transmission lines (18, 20) for carrying messages inrespective directions from and to the subsystems. The transmission lines (18, 20) are interconnected by an optical star coupler (16). The interface circuits (28) include respective error detection circuits arranged to detect errors in every transmitted message. Thus errors may be detected in a transmitted message even if the message is not intended to be received by the subsystem whose associated interface circuit (28) detects an error. For certain detected errors an ABORT signal is produced to cause the erroneous message to be garbled by the superposition of binary "1" signals. The subsystems include circuits which detect when the postamble of a message is garbled.
Abstract:
A data processing system (10) includes a plurality of subsystems coupled via respective interface circuits (28) to a pair of transmission lines (18, 20) for carrying messages inrespective directions from and to the subsystems. The transmission lines (18, 20) are interconnected by an optical star coupler (16). The interface circuits (28) include respective error detection circuits arranged to detect errors in every transmitted message. Thus errors may be detected in a transmitted message even if the message is not intended to be received by the subsystem whose associated interface circuit (28) detects an error. For certain detected errors an ABORT signal is produced to cause the erroneous message to be garbled by the superposition of binary "1" signals. The subsystems include circuits which detect when the postamble of a message is garbled.
Abstract:
A data processing system (10) includes a plurality of subsystems coupled via respective interface circuits (28) to a pair of transmission lines (18, 20) for carrying messages inrespective directions from and to the subsystems. The transmission lines (18, 20) are interconnected by an optical star coupler (16). The interface circuits (28) include respective error detection circuits arranged to detect errors in every transmitted message. Thus errors may be detected in a transmitted message even if the message is not intended to be received by the subsystem whose associated interface circuit (28) detects an error. For certain detected errors an ABORT signal is produced to cause the erroneous message to be garbled by the superposition of binary "1" signals. The subsystems include circuits which detect when the postamble of a message is garbled.
Abstract:
A self-correcting memory system includes internal error detection and correction circuitry that periodically accesses each data word and a group of ECC check bits associated with each data word stored in the memory system. The error detection and correction circuitry includes an ECC checking circuit that receives the accessed data word, generates ECC bits, and compares those ECC bits to the group of ECC check bits associated with the data word. The resulting signal is used to correct any single bit in error, and to indicate the presence of a double bit error. A self-correct address counter is cascaded to a refresh address counter in the control circuitry of the memory system so that the accessing of each data word occurs during a refresh cycle of the memory system.
Abstract:
A data processing system includes a plurality of stations (412), first and second star couplers (416A, 416B) and first and second pairs of transmission lines (414A, 414B) associated with each station (412). The first pair of transmission lines (414A) is connected between its associated station (412) and the first star coupler (416A) and the second pair of transmission lines (414B) is connected between its associated station (412) and the second star coupler (416B). Each pair of transmission lines includes a first transmission line (418A, 418B) for carrying signals from its associated station (412) and a second transmission line (420A, 420B) for carrying signals to its associated station (412). Each station (412) includes a plurality of subsystems (424A, 424B, 424C), coupled by respective interface circuits (428) to both pairs of transmission lines. The system provides reduced transmission interference and high reliability. The star couplers are preferably optical but may be electrical or magnetic star couplers.