Abstract:
Methods and systems for system maintenance include identifying patterns in heterogeneous logs. Predictive features are extracted from a set of input logs based on the identified patterns. It is determined that the predictive features indicate a future system failure using a first model. A second model is trained, based on a target sample from the predictive features and based on weights associated with a distance between the target sample and a set of samples from the predictive features, to identify one or more parameters of the second model associated with the future system failure. A system maintenance action is performed in accordance with the identified one or more parameters.
Abstract:
A method and system are provided. The method includes performing (320), by a logs-to-time-series converter, a logs-to-time-series conversion by transforming a plurality of heterogeneous logs into a set of time series. Each of the heterogeneous logs includes a time stamp and text portion with one or more fields. The method further includes performing (330), by a time-series-to-sequential-pattern converter, a time-series-to-sequential-pattern conversion by mining invariant relationships between the set of time series, and discovering sequential message patterns and association rules in the plurality of heterogeneous logs using the invariant relationships. The method also includes executing (340), by a processor, a set of log management applications, based on the sequential message patterns and the association rules.
Abstract:
Systems and methods for system event searching based on heterogeneous logs are provided. A system can include a processor device operatively coupled to a memory device wherein the processor device is configured to mine a variety of log patterns from various of heterogeneous logs to obtain known-event log patterns and unknown-event log patterns, as well as to build a weighted vector representation of the log patterns. The processor device is also configured to evaluate a similarity between the vector representation of the unknown-event and known-event log patterns, identify a known event that is most similar to an unknown event to troubleshoot system faults based on past actions for similar events to improve an operation of a computer system.
Abstract:
A method and system are provided for processing computer log messages for log visualization and log retrieval. The method includes collecting log messages from one or more computer system components, performing a log tokenization process on the log messages to generate tokens, transforming the tokens into log vectors associated with a metric space, performing dimensionality reduction on the metric space to project the metric space into a lower dimensional sub-space, storing similarity distances between respective pairs of the log vectors, and in response to receiving a query associated with a query log message for reducing operational inefficiencies of the one or more computer system components, employing the similarity distances to retrieve one or more similar log messages corresponding to the query log message for reducing the operational inefficiencies of the one or more computer system components.
Abstract:
Systems and methods are disclosed for detecting periodic event behaviors from machine generated logging by: capturing heterogeneous log messages, each log message including a time stamp and text content with one or more fields; recognizing log formats from log messages; transforming the text content into a set of time series data, one time series for each log format; during a training phase, analyzing the set of time series data and building a category model for each periodic event type in heterogeneous logs; and during live operation, applying the category model to a stream of time series data from live heterogeneous log messages and generating a flag on a time series data point violating the category model and generating an alarm report for the corresponding log message.
Abstract:
A method for automatically recommending a reviewer for submitted codes is presented. The method includes employing (801), in a learning phase, an artificial intelligence agent for learning an underlying and contextual structure of code regions, mapping (803) the code regions into a distributed representation to define code region representations, employing (805), in a recommendation phase, the artificial intelligence agent to produce a ranked list of recommended reviewers for any given submitted code review request, and outputting (807) the ranked list of recommended reviewers to a visualization device.
Abstract:
A computer-implemented method executed on a processor (214) for automatically analyzing log contents received via a network (803) and detecting content-level anomalies is presented. The computer-implemented method includes building a statistical model (103) based on contents of a set of training logs and detecting, based on the set of training logs, content-level anomalies (106) for a set of testing logs. The method further includes maintaining an index and metadata, generating attributes for fields, editing model capability to incorporate user domain knowledge, detecting anomalies using field attributes, and improving anomaly quality by using user feedback (107).
Abstract:
Methods for system failure prediction include clustering log files according to structural log patterns. Feature representations of the log files are determined based on the log clusters. A likelihood of a system failure is determined based on the feature representations using a neural network. An automatic system control action is performed if the likelihood of system failure exceeds a threshold.
Abstract:
Systems and methods are disclosed for handling log data from one or more applications, sensors or instruments by receiving heterogeneous logs from arbitrary/unknown systems or applications; generating regular expression patterns from the heterogeneous log sources using machine learning and extracting a log pattern therefrom; generating models and profiles from training logs based on different conditions and updating a global model database storing all models generated over time; tokenizing raw log messages from one or more applications, sensors or instruments running a production system; transforming incoming tokenized streams are into data-objects for anomaly detection and forwarding of log messages to various anomaly detectors; and generating an anomaly alert from the one or more applications, sensors or instruments running a production system.
Abstract:
Methods and systems for event detection and correction include determining a log pattern for a received event. The log pattern is translated to an event search query. The event search query is weighted according to discriminative dimensions using term- frequency inverse-document-frequency. The event search query is matched to one or more known events. A corrective action is automatically performed based on a solution associated with the one or more known events.