Abstract:
One or more techniques and/or computing devices are provided for replicating virtual machine disk clones. For example, a first storage controller, hosting first storage, may have a synchronous replication relationship with a second storage controller hosting second storage. A virtual machine, within the first storage, may be specified as having synchronous replication protection. Accordingly, virtual machine disk clones of a virtual machine disk of the virtual machine may be replicated from the first storage to the second storage. For example, virtual machine disk clones may be synchronous replicated, replicated by a resync process invoked by a hypervisor agent, and/or stored and replicated from a clone backup directory.
Abstract:
One or more techniques and/or computing devices are provided for data synchronization. For example, an in-flight log may be maintained to track storage operations that are received by a first storage node, but have not been committed to both first storage of the first storage node and second storage of a second storage node that has a replication relationship, such as a disaster recovery relationship, with the first storage node. A dirty region log may be maintained to track regions within the first storage that have been modified by storage operations that have not been replicated to the second storage. Accordingly, a catchup synchronization phase (e.g., asynchronous replication by a resync scanner) may be performed to replicate storage operations (e.g., replicate data within dirty regions of the first storage that were modified by such storage operations) to the second storage until the first storage and the second storage are synchronized.
Abstract:
One or more techniques and/or computing devices are provided for implementing synchronous replication. For example, a synchronous replication relationship may be established between a local storage controller hosting local storage and a remote storage controller hosting remote storage (e.g., replication may be specified at a file, logical unit number (LUN), or any other level of granularity). Data file operations may be implemented in parallel upon the local storage and the remote storage. Independent metadata file operations may be independently implemented from data file operations upon the local storage, and upon local completion may be remotely implemented upon the remote storage. In-flight data file operations may be drained before dependent metadata file operations are locally implemented upon the local storage, and upon local completion may be remotely implemented upon the remote storage.
Abstract:
First partial baseline data of a first storage system is identified. First changed data of the first storage system is identified. The first changed data comprises data that has changed since a previous point in time. First backup data is written to a second storage system. The first backup data comprises the first partial baseline data and the first changed data. After writing the first backup data to the second storage system, second partial baseline data of the first storage system is identified. The second partial baseline data does not include the first partial baseline data. Second changed data of the first storage system is identified. The second changed data comprises data that has changed since writing the first backup data. Second backup data is written to the second storage system. The second backup data comprises the second partial baseline data and the second changed data.
Abstract:
One or more techniques and/or computing devices are provided for synchronous replication. For example, synchronous replication relationships are established between a first storage object (e.g., a file, a logical unit number (LUN), a consistency group, etc.), hosted by a first storage controller, and a plurality of replication storage objects hosted by other storage controllers. In this way, a write operation to the first storage object is implemented in parallel upon the first storage object and the replication storage objects in a synchronous manner, such as using a zero-copy operation to reduce overhead otherwise introduced by performing copy operations. Reconciliation is performed in response to a failure so that the first storage object and the replication storage objects comprise consistent data. Failed write operations and replication write operations are retried, while enforcing a single write semantic. Dependent write order consistency is enforced for dependent write operations, such as overlapping write operations.
Abstract:
First partial baseline data of a first storage system is identified. First changed data of the first storage system is identified. The first changed data comprises data that has changed since a previous point in time. First backup data is written to a second storage system. The first backup data comprises the first partial baseline data and the first changed data. After writing the first backup data to the second storage system, second partial baseline data of the first storage system is identified. The second partial baseline data does not include the first partial baseline data. Second changed data of the first storage system is identified. The second changed data comprises data that has changed since writing the first backup data. Second backup data is written to the second storage system. The second backup data comprises the second partial baseline data and the second changed data.
Abstract:
Data consistency and availability can be provided at the granularity of logical storage objects in storage solutions that use storage virtualization in clustered storage environments. To ensure consistency of data across different storage elements, synchronization is performed across the different storage elements. Changes to data are synchronized across storage elements in different clusters by propagating the changes from a primary logical storage object to a secondary logical storage object. To satisfy the strictest RPOs while maintaining performance, change requests are intercepted prior to being sent to a filesystem that hosts the primary logical storage object and propagated to a different managing storage element associated with the secondary logical storage object.
Abstract:
One or more techniques and/or computing devices are provided for implementing synchronous replication. For example, a synchronous replication relationship may be established between a local storage controller hosting local storage and a remote storage controller hosting remote storage (e.g., replication may be specified at a file, logical unit number (LUN), or any other level of granularity). Data file operations may be implemented in parallel upon the local storage and the remote storage. Independent metadata file operations may be independently implemented from data file operations upon the local storage, and upon local completion may be remotely implemented upon the remote storage. In-flight data file operations may be drained before dependent metadata file operations are locally implemented upon the local storage, and upon local completion may be remotely implemented upon the remote storage.
Abstract:
Data consistency and availability can be provided at the granularity of logical storage objects in storage solutions that use storage virtualization in clustered storage environments. To ensure consistency of data across different storage elements, synchronization is performed across the different storage elements. Changes to data are synchronized across storage elements in different clusters by propagating the changes from a primary logical storage object to a secondary logical storage object. To satisfy the strictest RPOs while maintaining performance, change requests are intercepted prior to being sent to a filesystem that hosts the primary logical storage object and propagated to a different managing storage element associated with the secondary logical storage object.