Abstract:
Methods and systems that permit file protocols and object protocols to co-exist using a file namespace and an object namespace in a unified storage system are disclosed. Data stored in the unified storage system are file-objects that preserve the behaviors expected by both file clients and object clients.
Abstract:
Methods and systems that permit file protocols and object protocols to co-exist using a file namespace and an object namespace in a unified storage system are disclosed. Data stored in the unified storage system are file-objects that preserve the behaviors expected by both file clients and object clients.
Abstract:
In some embodiments, a multiple-data-storage-devices cartridge can implement a method of writing data via a data range application programming interface ("API"). The method can include: receiving a write request from a requester device, wherein the write request is a direct, broadcast or multicast, or fanout message and includes a size indication for a contiguous range of data; responsive to receiving the write request, sending a response message to the requester device indicating an intent to store the contiguous range of data; receiving the contiguous range of data from the requester device; powering on a target data storage device from amongst data storage devices within the cartridge while keeping at least another data storage device in the cartridge powered off; and writing the contiguous range of data to the target data storage device.
Abstract:
Methods and apparatuses for operating a storage system are provided. In one example, a storage system includes a storage server and a virtual storage appliance (VSA) implemented in a virtual machine. The storage server provides access to a first shared namespace of data. The VSA is operatively connected to the storage server system over a network connection and provides access to a second shared namespace of data over the network connection. The second shared namespace is defined by a policy and includes a subset of the first shared namespace. The VSA also replicates data of a third shared namespace of data at the VSA making the third shared namespace available at the VSA when the network connection is unavailable. The third namespace is defined by the policy and includes a subset of the second shared namespace.
Abstract:
Technology is disclosed for a data storage architecture for providing enhanced storage resiliency for a data object. The data storage architecture can be implemented in a single-tier configuration and/or a multi-tier configuration. In the single-tier configuration, a data object is encoded, e.g., based on an erasure coding method, to generate many data fragments, which are stored across many storage devices. In the multi-tier configuration, a data object is encoded, e.g., based on an erasure coding method, to generate many data segments, which are sent to one or more tiers of storage nodes. Each of the storage nodes further encodes the data segment to generate many data fragments representing the data segment, which are stored across many storage devices associated with the storage node. The I/O operations for rebuilding the data in case of device failures is spread across many storage devices, which minimizes the wear of a given storage device.
Abstract:
Systems and methods efficiently distribute information, such as path name, attributes and object information, corresponding to changes in a content repository to remote nodes in a network using storage-layer/object-based protocols. A difference monitoring client monitors name space and object space changes by identifying inodes which have been modified on storage volumes between two or more snapshots. The monitoring client builds a list which may include name information, object space information and attributes such as file size and permissions for each of the changed inodes that is utilized to update the edge nodes. Systems and methods also provide for geo-scale content distribution from a central repository to edge nodes using a storage- layer/object protocol. A caching mechanism is utilized to cache requested content at an edge node. Cached content may be maintained at the edge node during use and/or for an additional predetermined period. Difference monitoring client tracks such cached content for later use in the storage system.
Abstract:
Methods and apparatuses for operating a storage system are provided. In one example, a storage system includes a storage server and a virtual storage appliance (VSA) implemented in a virtual machine. The storage server provides access to a first shared namespace of data. The VSA is operatively connected to the storage server system over a network connection and provides access to a second shared namespace of data over the network connection. The second shared namespace is defined by a policy and includes a subset of the first shared namespace. The VSA also replicates data of a third shared namespace of data at the VSA making the third shared namespace available at the VSA when the network connection is unavailable. The third namespace is defined by the policy and includes a subset of the second shared namespace.