Abstract:
The invention provides an improved method and apparatus for creating a snapshot of a file system. In a first aspect of the invention, a "copy-on-write" mechanism is used. An effective snapshot mechanism must be efficient both in its use of storage space and in the time needed to create it because file systems are often large. The snapshot uses the same blocks as the active file system until the active file system is modified. Whenever a modification occurs, the modified data is copied to a new block and the old data is saved (henceforth called "copy-on-write". In this way, the snapshot only uses space where it differs from the active file system, and the amount of work required to create the snapshot is small. In a second aspect of the invention, a record of which blocks are being used by the snapshot is included in the snapshot itself, allowing effectively instantaneous snapshot creation and deletion.
Abstract:
A file system determines the relative vacancy of a collection of storage blocks, i.e., an “allocation area”. This is accomplished by recording an array of numbers, each of which describes the vacancy of a collection of storage blocks. The file system examines these numbers when attempting to record file blocks in relatively contiguous areas on a storage medium, such as a disk. When a request to write to disk occurs, the system determines the average vacancy of all of the allocation areas and queries the allocation areas for individual vacancy rates. The system preferably writes file blocks to the allocation areas that are above a threshold related to the average storage block vacancy of the file system.
Abstract:
A file system determines the relative vacancy of a collection of storage blocks, i.e., an “allocation area”. This is accomplished by recording an array of numbers, each of which describes the vacancy of a collection of storage blocks. The file system examines these numbers when attempting to record file blocks in relatively contiguous areas on a storage medium, such as a disk. When a request to write to disk occurs, the system determines the average vacancy of all of the allocation areas and queries the allocation areas for individual vacancy rates. The system preferably writes file blocks to the allocation areas that are above a threshold related to the average storage block vacancy of the file system.
Abstract:
A file system migrates a traditional volume to a virtual volume without data copying. In an embodiment, a traditional volume index node is selected for migration. The traditional volume index node is converted to a virtual volume index node. In one embodiment, the virtual volume index node provides both physical address information and virtual address information.
Abstract:
The invention provides an improved method and apparatus for creating a snapshot of a file system. In a first aspect of the invention, a "copy-on-write" mechanism is used. An effective snapshot mechanism must be efficient both in its use of storage space and in the time needed to create it because file systems are often large. The snapshot uses the same blocks as the active file system until the active file system is modified. Whenever a modification occurs, the modified data is copied to a new block and the old data is saved (henceforth called "copy-on-write". In this way, the snapshot only uses space where it differs from the active file system, and the amount of work required to create the snapshot is small. In a second aspect of the invention, a record of which blocks are being used by the snapshot is included in the snapshot itself, allowing effectively instantaneous snapshot creation and deletion.
Abstract:
A write allocation technique extends a conventional write allocation procedure employed by a write anywhere file system of a storage system. A write allocator of the file system implements the extended write allocation technique in response to an event in the file system. The extended write allocation technique efficiently allocates blocks, and frees blocks, to and from a virtual volume (vvol) of an aggregate. The aggregate is a physical volume comprising one or more groups of disks, such as RAID groups, underlying one or more vvols of the storage system. The aggregate has its own physical volume block number (pvbn) space and maintains metadata, such as block allocation structures, within that pvbn space. Each vvol also has its own virtual volume block number (vvbn) space and maintains metadata, such as block allocation structures, within that vvbn space. The inventive technique extends input/output efficiencies of the conventional write allocation procedure to comport with an extended file system layout of the storage system.
Abstract:
The invention provides a method and system for improving data access of a reliable file system. In a first aspect of the invention, the file system determines the relative vacancy of a collection of storage blocks, herein called an "allocation area". This is accomplished by recording an array of binary numbers. Each binary number in the array describes the vacancy of a collection of storage blocks. The file system examines these binary numbers when attempting to record file blocks in relatively contiguous areas on a storage medium, such as a hard disk. When a request to write to disk occurs, the system determines the average vacancy of all the allocation areas and queries the allocation areas for individual vacancy rates such as sequentially. The system preferably writes file blocks to the allocation areas that are above a threshold related to the average storage block vacancy of the file system. If the file in the request to write is larger than the selected allocation area, the next allocation area above the threshold is preferably used to write the remaining blocks of the file.
Abstract:
A system and method enables a storage system to support multiple volume type simultaneously. A volume type field is contained within a file system information block that permits the storage system to determine the type of volume of a particular volume associated therewith. The storage operating system may then interpret various on-disk data structures in accordance with the appropriate volume type.