Abstract:
A write-once-read-many (WORM) storage system that employs large-capacity and relatively inexpensive disks in connection with a file system on a file serv er is pro-vided. The file system contains most or all of the required WORM functionality so as to impose a minimal footprint on client applications, client operating systems and open protocols if desired. The system is organized around WORM storage volumes that contain files that, when committe d to WORM storage, cannot be deleted or modified. Any file path or directory tree structure used to identify the file within the WORM vol-ume is locked a nd cannot be deleted. In one embodiment, the administrator creates a WORM volum e, capable of storing designated WORM files. The client then creates an appropriate WORM file using the appropriate protocol semantics. The file is written to the volume and committed by transitioning the file attributes fro m a not-read-only to a read-only state. The file system recognizes the persistently stored WORM attribute of any file in a WORM volume as WORM file . Henceforth, any attempt to modify the file attributes, write to the file, or delete the file, by clients, administrators or other en-tities is rejected a nd a request denied message is returned to the attempting party.
Abstract:
This invention provides a specified retention date within a data set that is locked against deletion or modification within a WORM storage implementation. This retention date scheme does not utilize any proprietary application program interfaces (APIs) or protocols, but rather, employs native functionality within conventional file (or other data containers, data sets or block-based logical unit numbers) properties available in commonly used operating systems. In an illustrative embodiment, the retention date/time is calculated by querying the file's last-modified time prior to commit, adding the retention period to this value and thereby deriving a retention date after which the file can be released from WORM. Prior to commit, the computed retention date is stored in the file's “last access time” property/attribute field, or another metadata field that remains permanently associated with the file and that, in being used for retention date, does not interfere with file management in a WORM state. Since this field is not utilized in a WORM context, it can be adapted to store this date. Once stored, the retention date in this field is locked against modification. Where extension (never reduction) of a retention period is desired, the last access time field be updated, wherein the new retention period is added to the existing last access time value to derive a new, later retention date for the file. Upon expiry of the retention date, the system allows deletion of the expired WORM file/data set.
Abstract:
This invention provides a specified retention date within a data set that is locked against deletion or modification within a WORM storage implementation. This retention date scheme does not utilize any proprietary application program interfaces (APIs) or protocols, but rather, employs native functionality within conventional file (or other data containers, data sets or block-based logical unit numbers) properties available in commonly used operating systems. In an illustrative embodiment, the retention date/time is calculated by querying the file's last-modified time prior to commit, adding the retention period to this value and thereby deriving a retention date after which the file can be released from WORM. Prior to commit, the computed retention date is stored in the file's "last access time" property/attribute field, or another metadata field that remains permanently associated with the file and that, in being used for retention date, does not interfere with file management in a WORM state. Since this field is not utilized in a WORM context, it can be adapted to store this date. Once stored, the retention date in this field is locked against modification. Where extension (never reduction) of a retention period is desired, the last access time field be updated, wherein the new retention period is added to the existing last access time value to derive a new, later retention date for the file. Upon expiry of the retention date, the system allows deletion of the expired WORM file/data set.
Abstract:
A write-once-read-many (WORM) storage system that employs large-capacity and relatively inexpensive disks in connection with a file system on a file server is pro-vided. The file system contains most or all of the required WORM functionality so as to impose a minimal footprint on client applications, client operating systems and open protocols if desired. The system is organized around WORM storage volumes that contain files that, when committed to WORM storage, cannot be deleted or modified. Any file path or directory tree structure used to identify the file within the WORM vol-ume is locked and cannot be deleted. In one embodiment, the administrator creates a WORM volume, capable of storing designated WORM files. The client then creates an appropriate WORM file using the appropriate protocol semantics. The file is written to the volume and committed by transitioning the file attributes from a not-read-only to a read-only state. The file system recognizes the persistently stored WORM attribute of any file in a WORM volume as WORM file. Henceforth, any attempt to modify the file attributes, write to the file, or delete the file, by clients, administrators or other en-tities is rejected and a request denied message is returned to the attempting party.
Abstract:
A write-once-read-many (WORM) storage system that employs large-capacity and relatively inexpensive disks in connection with a file system on a file server is pro-vided. The file system contains most or all of the required WORM functionality so as to impose a minimal footprint on client applications, client operating systems and open protocols if desired. The system is organized around WORM storage volumes that contain files that, when committed to WORM storage, cannot be deleted or modified. Any file path or directory tree structure used to identify the file within the WORM vol-ume is locked and cannot be deleted. In one embodiment, the administrator creates a WORM volume, capable of storing designated WORM files. The client then creates an appropriate WORM file using the appropriate protocol semantics. The file is written to the volume and committed by transitioning the file attributes from a not-read-only to a read-only state. The file system recognizes the persistently stored WORM attribute of any file in a WORM volume as WORM file. Henceforth, any attempt to modify the file attributes, write to the file, or delete the file, by clients, administrators or other en-tities is rejected and a request denied message is returned to the attempting party.
Abstract:
This invention provides a specified retention date within a data set that is locked against deletion or modification within a WORM storage implementation. This retention date scheme does not utilize any proprietary application program interfaces (APIs) or protocols, but rather, employs native functionality within conventional file (or other data containers, data sets or block-based logical unit numbers) properties available in commonly used operating systems. In an illustrative embodiment, the retention date/time is calculated by querying the file's last-modified time prior to commit, adding the retention period to this value and thereby deriving a retention date after which the file can be released from WORM. Prior to commit, the computed retention date is stored in the file's "last access time" property/attribute field, or another metadata field that remains permanently associated with the file and that, in being used for retention date, does not interfere with file management in a WORM state. Since this field is not utilized in a WORM context, it can be adapted to store this date. Once stored, the retention date in this field is locked against modification. Where extension (never reduction) of a retention period is desired, the last access time field be updated, wherein the new retention period is added to the existing last access time value to derive a new, later retention date for the file. Upon expiry of the retention date, the system allows deletion of the expired WORM file/data set.
Abstract:
This invention provides a specified retention date within a data set that is locked against deletion or modification within a WORM storage implementation. This retention date scheme does not utilize any proprietary application program interfaces (APIs) or protocols, but rather, employs native functionality within conventional file (or other data containers, data sets or block-based logical unit numbers) properties available in commonly used operating systems. In an illustrative embodiment, the retention date/time is calculated by querying the file's last-modified time prior to commit, adding the retention period to this value and thereby deriving a retention date after which the file can be released from WORM. Prior to commit, the computed retention date is stored in the file's “last access time” property/attribute field, or another metadata field that remains permanently associated with the file and that, in being used for retention date, does not interfere with file management in a WORM state. Since this field is not utilized in a WORM context, it can be adapted to store this date. Once stored, the retention date in this field is locked against modification. Where extension (never reduction) of a retention period is desired, the last access time field be updated, wherein the new retention period is added to the existing last access time value to derive a new, later retention date for the file. Upon expiry of the retention date, the system allows deletion of the expired WORM file/data set.
Abstract:
This invention provides a specified retention date within a data set that is locked against deletion or modification within a WORM storage implementation. This retention date scheme does not utilize any proprietary application program interfaces (APIs) or protocols, but rather, employs native functionality within conventional file (or other data containers, data sets or block-based logical unit numbers) properties available in commonly used operating systems. In an illustrative embodiment, the retention date/time is calculated by querying the file's last-modified time prior to commit, adding the retention period to this value and thereby deriving a retention date after which the file can be released from WORM. Prior to commit, the computed retention date is stored in the file's “last access time” property/attribute field, or another metadata field that remains permanently associated with the file and that, in being used for retention date, does not interfere with file management in a WORM state. Since this field is not utilized in a WORM context, it can be adapted to store this date. Once stored, the retention date in this field is locked against modification. Where extension (never reduction) of a retention period is desired, the last access time field be updated, wherein the new retention period is added to the existing last access time value to derive a new, later retention date for the file. Upon expiry of the retention date, the system allows deletion of the expired WORM file/data set.
Abstract:
A write-once-read-many (WORM) storage system (116, 160) that employs large-capacity and relatively inexpensive disks (240, 245) in connection with a file system on a file server (112) is provided. The file system contains most or all of the required WORM (116, 160) functionality so as to impose a minimal footprint on client applications, client operating systems and open protocols if desired. The system is organized around WORM storage volumes that contain files (418) that, when committed to WORM storage (402), cannot be deleted or modified. Any file path or directory tree structure (418) used to identify the file within the WORM volume is locked and cannot be deleted. The administrator creates a WORM volume (302), capable of storing designated WORM files (418). The client then creates an appropriate WORM files (304) using the appropriate WORM file using the appropriate protocol semantics. The file is written to the volume and committed by transitioning the file attributes from a not-read-only to a read-only state 9, (506).