Abstract:
A method and apparatus are disclosed for restoring a virtual disk (vdisk) in a data storage system as the vdisk was at an earlier time. Pointers are maintained to point to data represented by the vdisk. The pointers are saved to persistent storage at the earlier time. The data at the earlier time is maintained on the data storage device. A pointer pointing to data represented by the vdisk at a later time is compared with the pointers saved at the earlier time. If the pointer from the later time matches the pointer saved at the earlier time, keeping the pointer from the later time in the active file system. If the pointer from the later time does not match the pointers saved at the earlier time, copying a set of pointers associated with the pointer saved at the earlier time to the active file system.
Abstract:
A file system layout apportions an underlying physical volume into one or more virtual volumes (vvols) of a storage system. The underlying physical volume is an aggregate comprising one or more groups of disks, such as RAID groups, of the storage system. The aggregate has its own physical volume block number (pvbn) space and maintains metadata, such as block allocation structures, within that pvbn space. Each vvol has its own virtual volume block number (vvbn) space and maintains meta-data, such as block allocation structures, within that vvbn space. Notably, the block allocation structures of a vvol are sized to the vvol, and not to the underlying aggregate, to thereby allow operations that manage data served by the storage system (e.g., snap-shot operations) to efficiently work over the vvols. The file system layout extends the file system layout of a conventional write anywhere file layout system implementation, yet maintains performance properties of the conventional implementation.
Abstract:
A method and apparatus are disclosed for restoring a virtual disk (vdisk) in a data storage system as the vdisk was at an earlier time. Pointers are maintained to point to data represented by the vdisk. The pointers are saved to persistent storage at the earlier time. The data at the earlier time is maintained on the data storage device. A pointer pointing to data represented by the vdisk at a later time is compared with the pointers saved at the earlier time. If the pointer from the later time matches the pointer saved at the earlier time, keeping the pointer from the later time in the active file system. If the pointer from the later time does not match the pointers saved at the earlier time, copying a set of pointers associated with the pointer saved at the earlier time to the active file system.
Abstract:
A method and apparatus are disclosed for restoring a virtual disk (vdisk) in a data storage system as the vdisk was at an earlier time. Pointers are maintained to point to data represented by the vdisk. The pointers are saved to persistent storage at the earlier time. The data at the earlier time is maintained on the data storage device. A pointer pointing to data represented by the vdisk at a later time is compared with the pointers saved at the earlier time. If the pointer from the later time matches the pointer saved at the earlier time, keeping the pointer from the later time in the active file system. If the pointer from the later time does not match the pointers saved at the earlier time, copying a set of pointers associated with the pointer saved at the earlier time to the active file system.
Abstract:
A system and method provides continuous data protection using checkpoints in a write anywhere file system. During a consistency point of a write anywhere file system, freed blocks are identified and are appended to a delete log for retention. A consistency point log is updated with a new entry associated with the consistency point. If the file system needs to retrieve its state at a particular point in time, the stored blocks of the delete log may be recovered.
Abstract:
As seen in Figure 1, a storage virtualization selection technique "automates" a virtualization selection process to create virtual disk (vdisk) storage objects over a volume (150) & (160) of a file system implemented by a storage operating system (200) of a multi-protocol storage appliance (100). The file system provides a virtualization system that aggregates physical storage of a set of disks (130) or portions (e.g., extents) of disks into a pool of blocks that can be dynamically allocated to form a vdisk. The file system also provides reliability guarantees for the vdisks in accordance with its underlying architecture. That is, the file system organizes its storage within volumes created among the managed disks. The vdisk is thereafter created as a storage object within a volume and inherits the underlying reliability configuration associated with that volume.
Abstract:
As seen in Figure 1, a storage virtualization selection technique “automates” a virtualization selection process to create virtual disk (vdisk) storage objects over a volume (150) & (160) of a file system implemented by a storage operating system (200) of a multi-protocol storage appliance (100). The file system provides a virtualization system that aggregates physical storage of a set of disks (130) or portions (e.g., extents) of disks into a pool of blocks that can be dynamically allocated to form a vdisk. The file system also provides reliability guarantees for the vdisks in accordance with its underlying architecture. That is, the file system organizes its storage within volumes created among the managed disks. The vdisk is thereafter created as a storage object within a volume and inherits the underlying reliability configuration associated with that volume.