Abstract:
A first group of embodiments is directed to binary phase shift key modulating a first pilot symbol according to a reference sequence, and differentially binary phase shift key modulating a second pilot symbol. The original reference sequence and the delayed differentially modulated sequence are then combined before performing an Inverse Fast Fourier Transform and inserting a guard interval. Receiver operations are an inverse of the transmitter operations. The receiver does not have to know the reference sequence. A second group of embodiments is directed to specifying a plurality of seeds that are bit patterns each having r bits not all of which have a value of zero, extending the seeds into respective sequences by applying to each seed a recurrence formula, using one of the sequences as a comb sequence and using the sequences other than the comb sequence as binary phase shift keying patterns.
Abstract:
Embodiments are directed to first and second OFDM pilot symbols. The first and second pilot symbols have first and second sets, respectively, of allowed, forbidden, and active carrier frequencies. The second sets of carrier frequencies are formed by frequency shifting the respective first sets by a predetermined frequency. A receiving method is directed to frequency translating part of a first received pilot symbol by one carrier interval in a first direction, frequency translating part of a second received pilot symbol by one carrier interval in a second direction that is opposite from the first direction, and forming a correlation by multiplying the frequency translated parts of the first and second pilot symbols by complex conjugates of parts of the pilot symbols upon which frequency translation has not been performed, and summing the multiplication results.
Abstract:
Embodiments are directed to first and second OFDM pilot symbols. The first and second pilot symbols may have first and second sets, respectively, of allowed, forbidden, and active carrier frequencies. The second sets of carrier frequencies may be formed by frequency shifting the respective first sets by a predetermined frequency, such as the frequency difference between adjacent carriers. An embodiment is directed to frequency translating part of a first received pilot symbol by one carrier interval in a first direction, frequency translating part of a second received pilot symbol by one carrier interval in a second direction that is opposite from the first direction, and forming a correlation by multiplying the frequency translated parts of the first and second pilot symbols by complex conjugates of parts of the pilot symbols upon which frequency translation has not been performed, and summing the multiplication results.
Abstract:
In accordance with an example embodiment of the present invention, a first bit sequence of a first length is assigned to a first group of signaling bits. Further, a second bit sequence of a second length is assigned to a second group of signaling bits. The first bit sequence is scrambled with a first scrambling sequence, and the second bit sequence is scrambled with a second scrambling sequence different from the first scrambling sequence. A first and a second orthogonal frequency-division multiplexing (OFDM) symbol are assigned to the first and the second scrambled bit sequences respectively, and the first and second orthogonal frequency-division multiplexing (OFDM) symbols are transmitted as synchronization symbols of a data frame. Further, a corresponding method for receiving the data frame, and apparatuses for transmission and reception are disclosed.
Abstract:
Apparatuses may perform and methods may include: receiving a digital broadcast signal that includes layer 2 (L2) signaling information; locating a physical layer pipe (PLP) carrying local multiplex information of the L2 signaling information and a PLP carrying other multiplex information of the L2 signaling information; and extracting the local multiplex information and the other multiplex information from the respective PLPs. Apparatuses may perform and methods may include: performing a handover using the extracted other multiplex information and continuing to receive services after the performance of the handover using information included in the other multiplex information.
Abstract:
Apparatuses may perform and methods may include: receiving a digital broadcast signal that includes layer 2 (L2) signaling information; locating a physical layer pipe (PLP) carrying local multiplex information of the L2 signaling information and a PLP carrying other multiplex information of the L2 signaling information; and extracting the local multiplex information and the other multiplex information from the respective PLPs. Apparatuses may perform and methods may include: performing a handover using the extracted other multiplex information and continuing to receive services after the performance of the handover using information included in the other multiplex information.