Abstract:
An adhesive dispensing system is disclosed. The system includes a heater unit configured to heat an adhesive to an application temperature, a fill system configured to supply the adhesive to said heater unit, and a controller. The controller is configured to actuate the fill system to supply the adhesive to the heater unit, operate the heater unit to maintain a unit set point temperature sufficient to heat the adhesive to the application temperature, and operate the heater unit to reduce its temperature from the unit set point temperature following a first set threshold time from actuation of the fill system to supply the adhesive to the heater unit.
Abstract:
An adhesive dispensing system is configured to automatically reduce the temperature of adhesive material to reduce degradation of the adhesive caused by holding the adhesive at an application temperature during periods of low throughput. To this end, a controller of the system operates a heater unit to maintain a unit set point temperature to heat and melt adhesive until a set threshold time has elapsed since the most recent supply of adhesive to the system by a fill system. Once the time elapsed since the most recent supply of adhesive exceeds the set threshold time, the heater unit is reduced in temperature to reduce the temperature of adhesive. This reduction is temperature is large enough to minimize degradation and outgassing but small enough to enable rapid warm-up times after a new supply of adhesive occurs.
Abstract:
An adhesive dispensing system is configured to automatically reduce the temperature of adhesive material to reduce degradation of the adhesive caused by holding the adhesive at an application temperature during periods of low throughput. To this end, a controller of the system operates a heater unit to maintain a unit set point temperature to heat and melt adhesive until a set threshold time has elapsed since the most recent supply of adhesive to the system by a fill system. Once the time elapsed since the most recent supply of adhesive exceeds the set threshold time, the heater unit is reduced in temperature to reduce the temperature of adhesive. This reduction is temperature is large enough to minimize degradation and outgassing but small enough to enable rapid warm-up times after a new supply of adhesive occurs.
Abstract:
An adhesive dispensing system is configured to automatically reduce the temperature of adhesive material to reduce degradation of the adhesive caused by holding the adhesive at an application temperature during periods of low throughput. To this end, a controller of the system operates a heater unit to maintain a unit set point temperature to heat and melt adhesive until a set threshold time has elapsed since the most recent supply of adhesive to the system by a fill system. Once the time elapsed since the most recent supply of adhesive exceeds the set threshold time, the heater unit is reduced in temperature to reduce the temperature of adhesive. This reduction is temperature is large enough to minimize degradation and outgassing but small enough to enable rapid warm-up times after a new supply of adhesive occurs.
Abstract:
An adhesive dispensing system is disclosed. The system includes a heater unit configured to heat an adhesive to an application temperature, a fill system configured to supply the adhesive to said heater unit, and a controller. The controller is configured to actuate the fill system to supply the adhesive to the heater unit, operate the heater unit to maintain a unit set point temperature sufficient to heat the adhesive to the application temperature, and operate the heater unit to reduce its temperature from the unit set point temperature following a first set threshold time from actuation of the fill system to supply the adhesive to the heater unit.
Abstract:
An adhesive dispensing system is configured to automatically reduce the temperature of adhesive material to reduce degradation of the adhesive caused by holding the adhesive at an application temperature during periods of low throughput. To this end, a controller of the system operates a heater unit to maintain a unit set point temperature to heat and melt adhesive until a set threshold time has elapsed since the most recent supply of adhesive to the system by a fill system. Once the time elapsed since the most recent supply of adhesive exceeds the set threshold time, the heater unit is reduced in temperature to reduce the temperature of adhesive. This reduction is temperature is large enough to minimize degradation and outgassing but small enough to enable rapid warm-up times after a new supply of adhesive occurs.