Abstract:
The present invention provides a method and apparatus for processing signals of a semiconductor detector, including: acquiring a relationship of a time difference between anode and cathode signals of the semiconductor detector with an anode signal amplitude; obtaining an optimal data screening interval according to the relationship of the time difference between anode and cathode signals of the semiconductor detector with the anode signal amplitude, wherein the optimal data screening interval is an interval where the time difference between the anode and cathode signals is greater than 50 ns; and screening and processing the collected data according to the optimal data screening interval when the semiconductor detector collects data. The present invention better overcomes the inherent crystal defects of the detector, reduces the effect of background noise, increases the energy resolution of the cadmium zinc telluride detector under room temperature, and improves the peak-to-compton ratio.
Abstract:
The present invention relates to the field of radiation detection, and provides a CdZnTe aerial inspection system and an inspection method. The inspection system comprises a CdZnTe spectrometer (10) and an aircraft (20). The aircraft (20) flies and carries the CdZnTe spectrometer (10) to realize a function of aerial inspection, thereby improving operating efficiency of nuclear radiation monitoring. The CdZnTe spectrometer (10) has high energy resolution, a small volume, a light weight, and desirable portability. By combining the CdZnTe spectrometer (10) and the aircraft (20), the present invention enables high measurement precision, a long operation duration, and an aerial access to a site of a nuclear accident to perform operations and inspect the site, thus reducing radiation exposure received by a person entering the site, and providing support for rescue operation.
Abstract:
According to an embodiment, a method of fabricating a photodiode device may include: growing an epitaxial layer on a first surface of a substrate, wherein the epitaxial layer is first type lightly doped; forming, in the substrate, a first type heavily doped region in contact with the first type lightly doped epitaxial layer; thinning the substrate from a second surface of the substrate opposite to the first surface to expose the first type heavily doped region; patterning the first type heavily doped region from the second surface side of the substrate to form a trench therein, that penetrates through the first type heavily doped region and extends into the epitaxial layer, to serve as a first electrode region of the photodiode device; and forming a second type heavily doped region at bottom of the trench, to serve as a second electrode region of the photodiode device.
Abstract:
A photodiode device and a photodiode detector are provided. According to an embodiment, the photodiode device may include a first type lightly doped semiconductor base including a first surface and a second surfaces opposite to each other, a first electrode region being first type heavily doped and disposed on the first surface of the semiconductor base, a second electrode region being second type heavily doped and disposed on the second surface of the semiconductor base, wherein the first surface is a light incident surface.
Abstract:
A coplanar electrode photodiode array and a manufacturing method thereof are disclosed. On a top side of a low resistance rate substrate, a high resistance epitaxial silicon wafer, a first conductive type heavily doped region and a second conductive type doped region are formed, which are a cathode and an anode of a photodiode respectively. The structure includes a trench structure formed between the anode and the cathode, the trench structure may be form by a gap, an insulating material, a conductive structure, a reflective material, and ion implantation, and also includes a first conductive type heavily doped region, an insulating isolation layer or a conductive structure with an insulating layer, and the like formed under the anode and the cathode.
Abstract:
There is provided a semiconductor detector. According to an embodiment, the semiconductor detector may include a semiconductor detection material including a first side and a second side opposite to each other. One of the first side and the second side is a ray incident side that receives incident rays. The detector may further include a plurality of pixel cathodes disposed on the first side and a plurality of pixel anodes disposed on the second side. The pixel anodes and the pixel cathodes correspond to each other one by one. The detector may further include a barrier electrode disposed on a periphery of respective one of the pixel cathodes or pixel anodes on the ray incident side. According to the embodiment of the present disclosure, it is possible to effectively suppress charge sharing between the pixels and thus to improve an imaging resolution of the detector.