Abstract:
Disclosed is a vehicle identification method and system. The method includes: acquiring appearance information of an inspected vehicle; obtaining external features of the vehicle based on the appearance information; acquiring a transmission image of the vehicle and obtaining internal features of the vehicle from the transmission image; forming descriptions on the vehicle at least based on the external features and the internal features; and determining a vehicle model of the vehicle from a vehicle model databased by utilizing the descriptions. This method merges various types of modality information, especially introducing the transmission image, and combines the internal structure information with the appearance information, so that the present disclosure can identify a vehicle model more practically.
Abstract:
The present disclosure provides a method and a system for inspecting goods. The method includes the steps of: obtaining a transmission image and a HSCODE of inspected goods; processing the transmission image to obtain a region of interest; retrieving from a model library a model created based on the HSCODE, in accordance with the HSCODE of the inspected goods; and determining whether there are any goods not registered in a customs declaration that are contained in the region of interest based on the model. With the above solution, it is possible to inspect goods in a container efficiently, so as to find out whether there are goods not indicated in the customs declaration that are concealed in the container.
Abstract:
The present disclosure provides a method and a system for inspecting goods. The method comprises steps of: obtaining a transmission image of inspected goods; processing the transmission image to obtain a suspicious region; extracting local texture features of the suspicious region and classifying the local texture features of the suspicious region based on a pre-created model to obtain a classification result; extracting a contour line shape feature of the suspicious region and comparing the contour line shape feature with a pre-created standard template to obtain a comparison result; and determining that the suspicious region contains a high atomic number matter based on the classification result and the comparison result.
Abstract:
The present disclosure relates to a fluoroscopic inspection system for automatic classification and recognition of cargoes. The system includes: an image data acquiring unit, configured to perform scanning and imaging for a container by using an X-ray scanning device to acquire a scanned image; an image segmenting unit, configured to segment the scanned image into small regions each having similar gray scales and texture features; a feature extracting unit, configured to extract features of the small regions; a training unit, configured to generate a classifier according to annotated images; and a classification and recognition unit, configured to recognize the small regions by using the classifier according to the extracted features, to obtain a probability of each small region pertaining to a certain category of cargoes, and merge small regions to obtain large regions each representing a category.
Abstract:
The present disclosure discloses an inspection method and device. The method comprises steps of acquiring a perspective image of an inspected object; processing the perspective image to obtain a region of interest; and automatically detecting the region of interest using a cigarette model, to determine whether the region of interest of the perspective image belongs to a cigarette. In the present disclosure, cigarette detection is implemented on a scanned image of goods, particularly a container, which can avoid the problem of detection vulnerability and poor effect of manual image judgment for the conventional manner, and is of significance in fighting against cigarette smuggling.
Abstract:
A vehicle type recognition method based on a laser scanner is provided, the method includes detecting that a vehicle to be checked has entered into a recognition area; causing a laser scanner to move relative to the vehicle to be checked; scanning the vehicle to be checked using the laser scanner on a basis of columns, and storing and splicing data of each column obtained by scanning to form a three-dimensional image of the vehicle to be checked, wherein a lateral width value is specified for each single column of data; specifying a height difference threshold; and determining a height difference between the height at the lowest position of the vehicle to be checked in data of column N and the height at the lowest position of the vehicle to be checked in data of specified number of columns preceding and/or succeeding to the column N.
Abstract:
Disclosed are methods and apparatuses for creating a 3-Dimensional model for objects in an inspected luggage in a CT system. The method includes acquiring slice data of the luggage with the CT system; interpolating the slice data to generate 3D volume data of the luggage; performing unsupervised segmentation on the 3D volume data of the luggage to obtain a plurality of segmental regions; performing isosurface extraction on the plurality of segmental regions to obtain corresponding isosurfaces; and performing 3D surface segmentation on the isosurfaces to form a 3D model for the objects in the luggage. The above solutions can create a 3D model for objects in the inspected luggage in a relatively accurate manner, and thus provide better basis for subsequent shape feature extraction and security inspection, and reduce omission factor.
Abstract:
Methods for extracting a shape feature of an object and security inspection methods and apparatuses. Use is made of CT's capability of obtaining a 3D structure. The shape of an object in an inspected luggage is used as a feature of a suspicious object in combination with a material property of the object. For example, a false alarm rate in detection of suspicious explosives may be reduced.
Abstract:
A semantic-based method and apparatus for retrieving a perspective image, an electronic device and a computer-readable storage medium are provided. An method includes obtaining a perspective image for a space containing an inspected object therein. A semantic division on the perspective image is performed using a first method, to obtain a plurality of semantic region units. A feature extraction network is constructed using a second method. Based on the perspective image and each of the plurality of semantic region units, a feature of each semantic region unit is extracted using the feature extraction network. Based on the feature of each semantic region unit, an image most similar to the semantic region unit is retrieved from an image feature database, to assist in determining an inspected object in the semantic region unit.
Abstract:
A semantic-based method and apparatus for retrieving a perspective image, an electronic device and a computer-readable storage medium are provided. An method includes obtaining a perspective image for a space containing an inspected object therein. A semantic division on the perspective image is performed using a first method, to obtain a plurality of semantic region units. A feature extraction network is constructed using a second method. Based on the perspective image and each of the plurality of semantic region units, a feature of each semantic region unit is extracted using the feature extraction network. Based on the feature of each semantic region unit, an image most similar to the semantic region unit is retrieved from an image feature database, to assist in determining an inspected object in the semantic region unit.