Abstract:
A self-regenerating chitosan based filter medium for disinfecting and purifying organic pollutants and other pollutants in a gas or liquid is disclosed herein. Porosity and surface charge of said filter medium is manipulative/tunable by varying one or more of the following parameter(s): concentration of chitosan, crosslinking density, amount of copolymers and additives, freezing temperature, freezing profile, and/or types of crosslinker used. The present filter medium is capable of self-regenerating under exposure to ultra-violet light for sufficient time and removing over 90% of the pollutants from each influent flowing through the filter medium.
Abstract:
The present disclosure provides a flexible electric generator and methods for fabricating the same. The flexible electric generator comprises a flexible triboelectric layer covering the electrode layer of a flexible piezoelectric generator that enhances output power by combining piezoelectric effect and triboelectric effect. The reliability of the flexible electric generator under bending is also improved due to the presence of the flexible triboelectric layer. The fabrication methods of the disclosed flexible electric generators are simple, thereby enabling large-scale manufacturing.
Abstract:
Flame retardant composition including: an optionally crosslinked rubber, an intumescent composition comprising a phosphate and a melamine polymer formed by combining melamine, formaldehyde, dicyandiamide, and aluminum hydroxide thereby forming the intumescent composition, a ceramic forming mixture, at least one glass additive, layered silicate nanoparticles, and optionally an antioxidant; and methods of preparation and use thereof.
Abstract:
Provided herein are energy absorbing composites including a thermoplastic resin, a dilatant, a compatibilizer, a reinforcing filler, and optionally an antioxidant and methods of preparation thereof.
Abstract:
A low printing temperature thermoplastic filament composition for fused filament fabrication 3D printing is described. The filament includes polycaprolactone in an amount from 70 to 90 wt %, at least one thermoplastic polymer having a melting temperature between approximately 60° C. and approximately 90° C. in an amount from approximately 10 to 30 wt %, at least one antioxidant, and at least one plasticizing agent. This 3D printing filament can be printed out at temperatures below 100° C. and no heated print bed is needed, which saves energy and minimizes the complexity of 3D printer. Besides the low printing temperature, this 3D printing material is bio-friendly which makes it safe for household use.
Abstract:
The present invention relates to a filter element for disinfecting, cleaning and purifying household water, by removing pollutants such as heavy metals, bacteria, VOCs, and even radioactive substance. The present filter element comprises activated carbon, ion exchange resins (cationic and anionic), biopolymer and transitional metal oxide. Said biopolymer and transitional metal oxide are both in particle form and said transitional metal oxide particle can be either incorporated into the biopolymer particle or directly incorporated into the present filter element as individual particle. Maximum capacity of the present filter element can reach up to 150 L of household water. Some of the pollutants can be removed by up to 99% by the present filter element. A method of preparing the present filter element is also disclosed herein.
Abstract:
The present invention relates to a novel plasma driven catalyst apparatus for disinfecting and purifying air. The apparatus has a synergistically favorable effect from plasma and catalyst on high disinfecting and purifying efficiency and efficacy, low by-product formation, and low energy consumption. The plasma combined with catalyst enhances the production of new active species, increases the oxidizing power of the plasma discharge, as well as activate the catalyst that additionally contributes towards the disinfection and purification process and the elimination of toxic by-products.
Abstract:
A low printing temperature thermoplastic filament composition for fused filament fabrication 3D printing is described. The filament includes polycaprolactone in an amount from 70 to 90 wt %, at least one thermoplastic polymer having a melting temperature between approximately 60° C. and approximately 90° C. in an amount from approximately 10 to 30 wt %, at least one antioxidant, and at least one plasticizing agent. This 3D printing filament can be printed out at temperatures below 100° C. and no heated print bed is needed, which saves energy and minimizes the complexity of 3D printer. Besides the low printing temperature, this 3D printing material is bio-friendly which makes it safe for household use.
Abstract:
The present invention provides photopolymer compositions for 3D printing which have low viscosity, proper curing rate, low volume shrinkage, and low ash content. Such compositions may be used in 3D printing for direct investment casting of products and rapid prototyping.
Abstract:
An energy dissipating fiber and fabric for protective textile application, which can absorb energy during shocking, stretching and vibration. The disclosed fiber/fabric can include a polymer matrix, a shear-thickening material and a reinforcing filler.