Abstract:
A method for manufacturing optical and microwave reflectors includes: placing an assembly comprising a resin-infiltrated tendrillar mat structure on a mandrel; placing a pre-impregnated carbon fiber (CF) lamina on top of the tendrillar mat structure; placing the assembly in a vacuum device so as to squeeze out excess resin; and placing the assembly in a heating device so as to cure the tendrillar mat structure together with the CF lamina, forming the CF laminae into a laminate that combines with the tendrillar mat structure to create a cured assembly. A reflector suitable for one or more of optical and microwave applications includes: a mandrel; a resin-infiltrated tendrillar mat structure placed on the mandrel; and a pre-impregnated carbon fiber (CF) lamina placed on top of the tendrillar mat structure.
Abstract:
A thermally-conductive and mechanically-robust bonding method for attaching a metal nanowire (MNW) array to an adjacent surface includes the steps of: removing a template membrane from the MNW; infiltrating the MNW with a bonding material; placing the bonding material on the adjacent surface; bringing an adjacent surface into contact with a top surface of the MNW while the bonding material is bondable; and allowing the bonding material to cool and form a solid bond between the MNW and the adjacent surface. A thermally-conductive and mechanically-robust bonding method for attaching a metal nanowire (MNW) array to an adjacent surface includes the steps of: choosing a bonding material based on a desired bonding process; and without removing the MNW from a template membrane that fills an interstitial volume of the MNW, depositing the bonding material onto a tip of the MNW.
Abstract:
A compressible, thermally-conductive, removable nanocomposite gasket includes: a nanocomposite foam; and a nanoparticle filler, wherein the nanocomposite foam has a filler loading of less than approximately 20%. A compressible, thermally-conductive, removable nanocomposite gasket includes: a nanocomposite foam; a nanoparticle filler; and a metallic mesh embedded in the foam wherein the nanocomposite foam has a filler loading of less than approximately 20%.
Abstract:
A polymer composite material that achieves an improved damage resistant performance reinforced composite by adding carbon nanotubes (CNTs) is disclosed. The CNTs serve as the mechanical strengthening component. Higher filler loadings and filler surface area proved by CNTs result in volume maximization which provides a more homogeneous distribution of fillers. This allows the formation of a network of nanofibers which reduces the filler-free volume of the matrix, effectively filling nano-sized voids.
Abstract:
A carbon nanotube (CNT) cable includes: a pair of plated twisted wires, each wire comprising one or more sub-cores, at least one sub-core comprising CNT yarn; a dielectric surrounding the plated twisted wires; and an electrical layer surrounding the dielectric, the electrical layer configured to shield the CNT cable. A method for making a CNT cable includes: controlling a deposition rate, depositing plating so as to surround a pair of wires, each wire comprising one or more sub-cores, at least one sub-core comprising CNT yarn; twisting the plated wires together; and surrounding the plated twisted wires with an electrical layer configured to shield the plated twisted wires, thereby creating the CNT cable.
Abstract:
A carbon nanotube (CNT) cable includes: a pair of plated twisted wires, each wire comprising one or more sub-cores, at least one sub-core comprising CNT yarn; a dielectric surrounding the plated twisted wires; and an electrical layer surrounding the dielectric, the electrical layer configured to shield the CNT cable. A method for making a CNT cable includes: controlling a deposition rate, depositing plating so as to surround a pair of wires, each wire comprising one or more sub-cores, at least one sub-core comprising CNT yarn; twisting the plated wires together; and surrounding the plated twisted wires with an electrical layer configured to shield the plated twisted wires, thereby creating the CNT cable.
Abstract:
A compressible, thermally-conductive, removable nanocomposite gasket includes: a nanocomposite foam; and a nanoparticle filler, wherein the nanocomposite foam has a filler loading of less than approximately 20%. A compressible, thermally-conductive, removable nanocomposite gasket includes: a nanocomposite foam; a nanoparticle filler; and a metallic mesh embedded in the foam wherein the nanocomposite foam has a filler loading of less than approximately 20%.
Abstract:
A thermally-conductive and mechanically-robust bonding method for attaching a metal nanowire (MNW) array to an adjacent surface includes the steps of: removing a template membrane from the MNW; infiltrating the MNW with a bonding material; placing the bonding material on the adjacent surface; bringing an adjacent surface into contact with a top surface of the MNW while the bonding material is bondable; and allowing the bonding material to cool and form a solid bond between the MNW and the adjacent surface. A thermally-conductive and mechanically-robust bonding method for attaching a metal nanowire (MNW) array to an adjacent surface includes the steps of: choosing a bonding material based on a desired bonding process; and without removing the MNW from a template membrane that fills an interstitial volume of the MNW, depositing the bonding material onto a tip of the MNW.
Abstract:
A thermally-conductive and mechanically-robust bonding method for attaching a metal nanowire (MNW) array to an adjacent surface includes the steps of: removing a template membrane from the MNW; infiltrating the MNW with a bonding material; placing the bonding material on the adjacent surface; bringing an adjacent surface into contact with a top surface of the MNW while the bonding material is bondable; and allowing the bonding material to cool and form a solid bond between the MNW and the adjacent surface. A thermally-conductive and mechanically-robust bonding method for attaching a metal nanowire (MNW) array to an adjacent surface includes the steps of: choosing a bonding material based on a desired bonding process; and without removing the MNW from a template membrane that fills an interstitial volume of the MNW, depositing the bonding material onto a tip of the MNW.
Abstract:
A method for making a thermal interface material (TIM) comprises the steps of: depositing a seed layer onto a substrate; attaching a template membrane to the substrate; depositing metal into one or more of the pores of the template membrane, substantially filling the template membrane to create a vertically-aligned metal nanowire (MNW) array comprising a plurality of nanowires that grow upward from the seed layer; and after the template membrane is substantially filled with the deposited metal, removing the template membrane, leaving the plurality of nanowires attached to the seed layer. A TIM comprises: a vertically-aligned MNW array comprising a plurality of nanowires that grow upward from a seed layer deposited on the surface of a template membrane, and the template membrane being removed after MNW growth.