Abstract:
Techniques for predictive system remediation are disclosed. Based on attributes associated with applications of one or more system-selected remedial actions to one or more problematic system behaviors in a system (e.g., a database system), the system determines a predicted effectiveness of one or more future applications of a remedial action to a particular problematic system behavior, as of one or more future times. The system determines that the predicted effectiveness of the one or more future applications of the remedial action is positive but does not satisfy a performance criterion. Responsive to determining that the predicted effectiveness is positive but does not satisfy the performance criterion, the system generates a notification corresponding to the predicted effectiveness not satisfying the performance criterion. The system applies the remedial action to the particular problematic system behavior, despite already determining that the predicted effectiveness does not satisfy the one or more performance criteria.
Abstract:
Techniques are described for generating period profiles. According to an embodiment, a set of time series data is received, where the set of time series data includes data spanning a plurality of time windows having a seasonal period. Based at least in part on the set of time-series data, a first set of sub-periods of the seasonal period is associated with a particular class of seasonal pattern. A profile for a seasonal period that identifies which sub-periods of the seasonal period are associated with the particular class of seasonal pattern is generated and stored, in volatile or non-volatile storage. Based on the profile, a visualization is generated for at least one sub-period of the first set of sub-periods of the seasonal period that indicates that the at least one sub-period is part of the particular class of seasonal pattern.
Abstract:
Techniques are described for characterizing and summarizing seasonal patterns detected within a time series. According to an embodiment, a set of time series data is analyzed to identify a plurality of instances of a season, where each instance corresponds to a respective sub-period within the season. A first set of instances from the plurality of instances are associated with a particular class of seasonal pattern. After classifying the first set of instances, a second set of instances may remain unclassified or otherwise may not be associated with the particular class of seasonal pattern. Based on the first and second set of instances, a summary may be generated that identifies one or more stretches of time that are associated with the particular class of seasonal pattern. The one or more stretches of time may span at least one sub-period corresponding to at least one instance in the second set of instances.