Organic light-emitting diode
    2.
    发明授权

    公开(公告)号:US09911940B2

    公开(公告)日:2018-03-06

    申请号:US15502198

    申请日:2015-07-31

    Abstract: The invention relates to an organic light-emitting diode (1000) with an organic layer sequence (100). The organic layer sequence (100) comprises a first organic emitter layer (1) for generating electromagnetic radiation of a first wavelength range (10) and a second organic emitter layer (2) for generating electromagnetic radiation of a second wavelength range (20). A charge carrier generation layer sequence (33), CGL for short, is arranged between the first (1) and the second (2) emitter layer, and the first emitter layer (1) and the second emitter layer (2) are electrically connected in series via said CGL. The CGL (33) additionally has a converter material which converts the radiation of the first (10) and/or the second (20) wavelength range at least partially into radiation of a third wavelength range (30). In this manner, the organic light-emitting diode (1000) can emit mixed light with components of the first (10), second (20), and third (30) wavelength range.

    ORGANIC LIGHT-EMITTING DIODE DEVICE
    3.
    发明申请

    公开(公告)号:US20180019289A1

    公开(公告)日:2018-01-18

    申请号:US15548805

    申请日:2016-02-02

    Abstract: According to the present disclosure, an organic light-emitting diode device is disclosed with an organic light-emitting diode having a first main surface and a second main surface lying opposite the first main surface, an optically functional device having a first hollow space and a second hollow space, and a control element. The first hollow space is arranged on or over the first main surface, and the second hollow space is arranged below the second main surface. The first hollow space and the second hollow space are connected to one another by means of a fluid connection. An optically functional fluid is arranged in the optically functional device. The control element is configured to move the optically functional fluid to and fro between the first hollow space and the second hollow space.

    Method for producing an organic light-emitting diode, and organic light-emitting diode

    公开(公告)号:US10177331B2

    公开(公告)日:2019-01-08

    申请号:US15118086

    申请日:2015-02-10

    Abstract: The invention relates to a method for producing an organic light-emitting diode (1) comprising the following steps: providing a carrier (3) for the organic light-emitting diode (1), applying a solution (S) comprising a plurality of different emitter materials (E) to the carrier (1), wherein said emitter materials (E) are each formed by a certain type of organic molecule and have electrical charges that differ from each other, applying an electrical field (F), so that the solution is located in the electrical field (F), and drying the solution (S) into a plurality of emitter layers (20) in an organic layer stack (2), while the electrical field is applied, so that the emitter materials (E) are accommodated separately from each other, each in a certain emitter layer (20) of the organic stack (2).

    Organic electronic component having a charge carrier generation layer and the use of a zinc complex as a P-type dopant in charge carrier generation layers

    公开(公告)号:US10581001B2

    公开(公告)日:2020-03-03

    申请号:US15763068

    申请日:2016-09-27

    Abstract: The invention relates to an organic electronic component (100) comprising at least one charge generation layer (5) which has an organically p-doped region (5a) that contains a zinc complex as a p-dopant, said zinc complex in turn containing at least one ligand L of the following structure: formula (I) wherein R1 and R2 can be oxygen, sulphur, selenium, NH or NR4 independently from one another, wherein R4 is selected from the group containing alkyl or aryl and which can be bonded to R3; and wherein R3 is selected from the group containing alkyl, long-chain alkyl, cycloalkyl, halogen alkyl, at least partially halogenated long-chain alkyl, halogen cycloalkyl, aryl, arylene, halogen aryl, heteroaryl, heteroarylene, heterocyclic alkylene, heterocycloalkyl, halogen heteroaryl, alkenyl, halogen alkenyl, alkynyl, halogen alkynyl, ketoaryl, halogen ketoaryl, ketoheteroaryl, ketoalkyl, halogen ketoalkyl, ketoalkenyl, halogen ketoalkenyl, halogen alkyl aryl, and halogen alkyl heteroaryl, wherein, for suitable groups, one or a number of non-adjacent CH2 groups can be replaced by —O—, —S—, —NH—, —NR∘∘∘—, —SiR∘R∘∘—, —CO—, —COO—, —COR∘OR∘∘—, —OCO—, —OCO—O—, —SO2-, —S—CO—, —CO—S—, —O—CS—, —CS—O—, —CY1=CY2 or —C≡C— independently from one another, and in such a way that O and/or S atoms are not directly bonded to one another, and are replaced optionally with aryl- or heteroaryl preferably containing between 1 and 30 C atoms (terminal CH3 groups are understood to be CH2 groups in the sense of CH2-H). The invention further relates to the use of a zinc complex as a p-dopant in charge generation layers.

Patent Agency Ranking