Abstract:
An optoelectronic semiconductor chip includes a semiconductor body with an active region provided for generating electromagnetic radiation, a first mirror layer provided for reflecting the electromagnetic radiation, a first encapsulation layer formed with an electrically insulating material, and a carrier provided for mechanically supporting the first encapsulation layer, the first mirror layer and the semiconductor body. The first mirror layer is arranged between the carrier and the semiconductor body. The first encapsulation layer is arranged between the carrier and the first mirror layer. The first encapsulation layer is an ALD layer.
Abstract:
An optoelectronic semiconductor device includes a semiconductor layer sequence including an active zone that generates radiation by electroluminescence; a p-electrode and an n-electrode; an electrically insulating passivation layer on side surfaces of the semiconductor layer sequence; and an edge field generating device on the side surfaces on a side of the passivation layer facing away from the semiconductor layer sequence at the active zone, wherein the edge field generating device is configured to generate an electric field at least temporarily in an edge region of the active zone so that, during operation, a current flow through the semiconductor layer sequence is controllable in the edge region.
Abstract:
An optoelectronic semiconductor chip includes an active region arranged between a first semiconductor layer and a second semiconductor layer and generates or receives electromagnetic radiation, the first semiconductor layer electrically conductively connects to a first contact, the first contact is formed on a front side of the chip next to the active region, the second semiconductor layer electrically conductively connects to a second contact, the second contact is arranged on the front side of the chip next to the active region, and an electrically insulating separating layer that electrically insulates a rear side of the chip from the active region of the semiconductor chip, and an electrically insulating separating layer includes at least one first separating layer having at least one atomic layer or at least one molecular layer and is deposited by atomic layer deposition or molecular layer deposition.
Abstract:
An optoelectronic semiconductor device includes a semiconductor layer sequence including an active zone that generates radiation by electroluminescence; a p-electrode and an n-electrode; an electrically insulating passivation layer on side surfaces of the semiconductor layer sequence; and an edge field generating device on the side surfaces on a side of the passivation layer facing away from the semiconductor layer sequence at the active zone, wherein the edge field generating device is configured to generate an electric field at least temporarily in an edge region of the active zone so that, during operation, a current flow through the semiconductor layer sequence is controllable in the edge region.
Abstract:
In an embodiment, an optoelectronic semiconductor component includes a semiconductor layer sequence with a doped first layer, a doped second layer, an active zone configured to generate radiation by electroluminescence between the first layer and the second layer, and a side surface extending transversely to the active zone and delimiting the semiconductor layer sequence in a lateral direction, two electrodes for electrical contact between the first and second layers and a cover layer located on the side surface in a region of the first layer, wherein the cover layer is in direct contact with the first layer, wherein a material of the cover layer alone and its direct contact with the first layer are configured to cause a formation of a depletion zone in the first layer, wherein the depletion zone comprises a lower concentration of majority charge carriers compared to a rest of the first layer, wherein the cover layer comprises a metal or a metal compound, and wherein the cover layer forms a Schottky contact with the first layer.
Abstract:
An optoelectronic semiconductor chip includes a semiconductor body with an active region provided for generating electromagnetic radiation, a first mirror layer provided for reflecting the electromagnetic radiation, a first encapsulation layer formed with an electrically insulating material, and a carrier provided for mechanically supporting the first encapsulation layer, the first mirror layer and the semiconductor body. The first mirror layer is arranged between the carrier and the semiconductor body. The first encapsulation layer is arranged between the carrier and the first mirror layer. The first encapsulation layer is an ALD layer.
Abstract:
An optoelectronic semiconductor chip includes an active region arranged between a first semiconductor layer and a second semiconductor layer and generates or receives electromagnetic radiation, the first semiconductor layer electrically conductively connects to a first contact, the first contact is formed on a front side of the chip next to the active region, the second semiconductor layer electrically conductively connects to a second contact, the second contact is arranged on the front side of the chip next to the active region, and an electrically insulating separating layer that electrically insulates a rear side of the chip from the active region of the semiconductor chip, and an electrically insulating separating layer includes at least one first separating layer having at least one atomic layer or at least one molecular layer and is deposited by atomic layer deposition or molecular layer deposition.