Abstract:
There is herein described a LED lighting device utilizing quantum dots in layers on top of an LED chip. The quantum dots layers and the LED chip are arranged with gradient refractive indices, so that the refractive index of each layer is preferably less than the refractive index of the immediately underlying layer or chip. The quantum dots with emission peaks at longer wavelengths are preferably arranged in lower layers closer to the LED chip; while the quantum dots with emission peaks at shorter wavelengths are arranged in higher layers farther from the LED chip.
Abstract:
Wavelength converters (103) including a porous matrix layer (104) are described. In some embodiments the porous matrix layer (104) includes pore structures, which are at least partially infiltrated with one or more types of wavelength converting particles (105), such as quantum dot particles. Methods of making such wavelength converters (103) and lighting devices (100) including such wavelength converters (103) are also described.
Abstract:
Disclosed herein are wavelength converters and methods for making the same. The wavelength converters include a single layer of a polymeric matrix material, and one or more types of wavelength converting particles. In some embodiments the wavelength converters include first and second types of wavelength converting particles that are distributed in a desired manner within the single layer of polymeric matrix material. Methods of forming such wavelength converters and lighting devices including such wavelength converters are also disclosed.
Abstract:
The present disclosure is directed to light converter assemblies with enhanced heat dissipation. A light converter assembly may comprise a confinement material applied to at least a first substrate and a phosphor material also deposited on the first substrate so as to be surrounded by the confinement material. The first substrate may be hermetically sealed to a second substrate using the confinement material so that the phosphor material is confined between the substrates and protected from atmospheric contamination. The substrates may comprise, for example, sapphire to allow for light beam transmission and heat conductance. Confinement materials that may be employed to seal the first substrate to the second substrate may include, for example, silicon or a metal (e.g., silver, copper, aluminum, etc.) The phosphor material may comprise, for example, at least one quantum dot material.
Abstract:
A light emitting diode (LED) light engine includes a solid transparent dome mounted on one or more LED dies to form a base module, a flexible sheath having embedded therein a phosphor that converts light of a first wavelength range to light of a second wavelength range, the sheath being attached to the base module so that the sheath conforms to a light emitting surface of the dome. The sheath emits light of the second wavelength range when the LED is emitting light of the first wavelength range. Further sheaths may be formed each with different phosphors or phosphor blends, and one of the sheaths may be selected to cover the base module depending on the color of light to be produced by the light engine.
Abstract:
A light emitting diode (LED) light engine includes a solid transparent dome mounted on one or more LED dies to form a base module, a flexible sheath having embedded therein a phosphor that converts light of a first wavelength range to light of a second wavelength range, the sheath being attached to the base module so that the sheath conforms to a light emitting surface of the dome. The sheath emits light of the second wavelength range when the LED is emitting light of the first wavelength range. Further sheaths may be formed each with different phosphors or phosphor blends, and one of the sheaths may be selected to cover the base module depending on the color of light to be produced by the light engine.
Abstract:
A light emitting diode (LED) light engine includes a solid transparent dome mounted on one or more LED dies to form a base module, a flexible sheath having embedded therein a phosphor that converts light of a first wavelength range to light of a second wavelength range, the sheath being attached to the base module so that the sheath conforms to a light emitting surface of the dome. The sheath emits light of the second wavelength range when the LED is emitting light of the first wavelength range. Further sheaths may be formed each with different phosphors or phosphor blends, and one of the sheaths may be selected to cover the base module depending on the color of light to be produced by the light engine.
Abstract:
Disclosed herein are wavelength converters and methods for making the same. The wavelength converters include a single layer of a polymeric matrix material, and one or more types of wavelength converting particles. In some embodiments the wavelength converters include first and second types of wavelength converting particles that are distributed in a desired manner within the single layer of polymeric matrix material. Methods of forming such wavelength converters and lighting devices including such wavelength converters are also disclosed.
Abstract:
The present disclosure is directed to light converter assemblies with enhanced heat dissipation. A light converter assembly may comprise a confinement material applied to at least a first substrate and a phosphor material also deposited on the first substrate so as to be surrounded by the confinement material. The first substrate may be hermetically sealed to a second substrate using the confinement material so that the phosphor material is confined between the substrates and protected from atmospheric contamination. The substrates may comprise, for example, sapphire to allow for light beam transmission and heat conductance. Confinement materials that may be employed to seal the first substrate to the second substrate may include, for example, silicon or a metal (e.g., silver, copper, aluminum, etc.) The phosphor material may comprise, for example, at least one quantum dot material.
Abstract:
The present disclosure is directed to light converter assemblies with enhanced heat dissipation. A light converter assembly may comprise a confinement material applied to at least a first substrate and a phosphor material also deposited on the first substrate so as to be surrounded by the confinement material. The first substrate may be hermetically sealed to a second substrate using the confinement material so that the phosphor material is confined between the substrates and protected from atmospheric contamination. The substrates may comprise, for example, sapphire to allow for light beam transmission and heat conductance. Confinement materials that may be employed to seal the first substrate to the second substrate may include, for example, silicon or a metal (e.g., silver, copper, aluminum, etc.) The phosphor material may comprise, for example, at least one quantum dot material.