Abstract:
A method is provided in a receiving node for handling status information of data units transmitted from a sending node to the receiving node over a radio link. The receiving node detects that a number of RLC Data PDUs transmitted by the peer AM RLC entity are missing, and constructing a STATUS PDU to include NACK_SNs for a first part of the missing RLC Data PDUs and omitting NACK_SNs for the rest of the missing RLC Data PDUs. The receiving node further sets the ACK_SN field of the status PDU such that the status PDU includes only acknowledgments for PDUs having a sequence number equal to or less than the minimum sequence number omitted from the status PDU, and sends sending the STATUS PDU from the AM RLC entity to the peer AM RLC entity over the radio link.
Abstract:
Scheduling requests are transmitted from a mobile terminal to a base station. The mobile sends a first scheduling request to the base station, the first scheduling request being associated with first data to be transmitted to the base station. The mobile receives a scheduling grant from the base station in response to the first scheduling request and transmits a buffer status report to the base station in response to receiving the scheduling grant. An HARQ acknowledgment for the buffer status report is received. Second data is received for transmission to the base station while at least some of the first data is waiting to be transmitted to the base station. A change in a buffer status of the mobile terminal is detected indicating that the second data has higher priority than the first data. The mobile transmits a second subsequent scheduling request to the base station in response to the change in buffer status.
Abstract:
Aspects of the present invention relate to the scheduling of resources in a telecommunication system that includes a mobile terminal and base station. In one embodiment, the mobile terminal sends an initial scheduling request to a base station. Subsequently, the mobile terminal does not transmit a scheduling request to the base station unless and until a scheduling request triggering event is detected.
Abstract:
Aspects of the present invention relate to the scheduling of resources in a telecommunication system that includes a mobile terminal and base station. In one embodiment, the mobile terminal sends an initial scheduling request to a base station. Subsequently, the mobile terminal does not transmit a scheduling request to the base station unless and until a scheduling request triggering event is detected.
Abstract:
A method is provided in a receiving node for handling status information of data units transmitted from a sending node to the receiving node over a radio link. The receiving node establishes that a number of data units that has been transmitted by the sending node are missing. The receiving node sends a reduced status message to the sending node over the radio link, which message is reduced such that it comprises the negative acknowledgement for a first part of missing data units and omits negative acknowledgements for the rest of the missing data units. The omitted negative acknowledgement for the rest of the missing data units will not erroneously be interpreted as correctly received data units by the sending node.
Abstract:
Scheduling requests are transmitted from a mobile terminal to a base station. The mobile sends a first scheduling request to the base station, the first scheduling request being associated with first data to be transmitted to the base station. The mobile receives a scheduling grant from the base station in response to the first scheduling request and transmits a buffer status report to the base station in response to receiving the scheduling grant. An HARQ acknowledgment for the buffer status report is received. Second data is received for transmission to the base station while at least some of the first data is waiting to be transmitted to the base station. A change in a buffer status of the mobile terminal is detected indicating that the second data has higher priority than the first data. The mobile transmits a second subsequent scheduling request to the base station in response to the change in buffer status.