Abstract:
The disclosure relates to a method of performing ozonolysis or ozone-based oxidation on a liquid or emulsified reagent using a tubular falling film reactor with one or multiple tubes wherein the combined ozone and carrier gas flow is co-current.
Abstract:
This disclosure relates to a highly efficient and safe reactor for the continuous quenching of peroxide mixtures generated during the reaction of unsaturated compounds with ozone, which minimizes the amount of highly reactive peroxides accumulated in the reactor at any given time. The reactor may be modified to allow for expansion to accommodate the quenching parameters of a wide variety of ozonolysis reactions and flow rates. The reactor may be constructed from highly pressure rated stainless steel for maximum durability, safety, and economic practicality while increasing the safety of peroxide quenching, thus allowing tighter process control and improved product yields. This disclosure also related to methods for quenching ozonides.
Abstract:
The disclosure relates to a method of performing ozonolysis or ozone-based oxidation on a liquid or emulsified reagent using a tubular falling film reactor with one or multiple tubes wherein the combined ozone and carrier gas flow is co-current.