Abstract:
The present invention generally relates to the field of fiber optics, and more specifically to optical fibers, methods of manufacturing optical fibers, and methods of classifying optical fibers. In an embodiment, the present invention is a multimode optical fiber which comprises a core and clad material system where the refractive indices of the core and cladding are selected to minimize chromatic dispersion in the 850 nm wavelength window and the refractive index profile is optimized for minimum modal-chromatic dispersion in channels utilizing VCSEL transceivers. Multimode optical fibers according to this embodiment may have increased channel bandwidth.
Abstract:
The present invention relates in general to communication systems, and more specifically towards methods, systems, and devices that help improve transmission rates and spectral efficiency of intensity modulated (IM) or power modulated channels utilizing multi-level pulse amplitude modulation PAM-M. In an embodiment, the present invention used an iterative algorithm to open the eyes of an eye diagram in a relatively short number of steps. The algorithm, which may not require previous characterization of the channel, utilizes pseudo-random sequences, such as PSBS15 or PRQS10, and adaptive non-linear equalizers to optimize the pre-distortion taps.
Abstract:
Methods for estimating the Effective Modal Bandwidth (EMB) of laser optimized Multimode Fiber (MMF) at a specified wavelength, λS, based on the measured EMB at a first reference measurement wavelength, λM. In these methods the Differential Mode Delay (DMD) of a MMF is measured and the Effective Modal Bandwidth (EMB) is computed at a first measurement wavelength. By extracting signal features such as centroids, peak power, pulse widths, and skews, as described in this disclosure, the EMB can be estimated at a second specified wavelength with different degrees of accuracy. The first method estimates the EMB at the second specified wavelength based on measurements at the reference wavelength. The second method predicts if the EMB at the second specified wavelength is equal or greater than a specified bandwidth limit.
Abstract:
The present invention relates generally to multimode optical fibers (MMFs) and methods for optimizing said MMFs for transmission for at least two optical wavelengths. In an embodiment, the present invention is a multimode optical fiber optimized for multi-wavelength transmission in communication systems utilizing VCSEL transceivers, where the MMF has a bandwidth designed to maximize and equalize channel reach for multiple wavelengths, and/or where the MMF minimizes for wavelength dependent optical power penalties at one or more wavelengths. The alpha coefficient of the refractive index profile is numerically optimized for all wavelengths based on a transmission model that includes calculation of, inter alia, modal dispersion and chromatic dispersion effects.
Abstract:
The present invention generally relates to the field of fiber optics, and more particularly, to apparatuses, systems, and methods directed towards improving effective modal bandwidth within a fiber optic communication environment. In an embodiment, a multimode optical fiber in accordance with the present invention comprises a core and cladding material system where the refractive indices of the core and cladding are selected to modify the shape of the profile dispersion parameter, y, as a function of wavelength in such a way that the alpha parameter (α- parameter), which defines the refractive index profile, produces negative relative group delays over a broad range of wavelengths. The new shape of the profile dispersion parameter departs from traditional fibers where the profile dispersion parameter monotonically decreases around the selected wavelength that maximizes the effective modal bandwidth (EMB).
Abstract:
An improved algorithm for calculating multimode fiber system bandwidth which addressee both modal dispersion and chromatic dispersion effects is provided. The radial dependence of a laser transmitter emission spectrum is taken into account to assist in designing more effective optical transmission systems.
Abstract:
A method and apparatus for verifying the termination quality of an optical fiber interface in a fiber optic connector is provided. The test apparatus generally comprises a light source providing light to a test connector which contains an interface of a stub fiber of a fiber optic connector and a field fiber of a fiber optic cable. The portions of the test connector that are located between the optical fiber optic interface and the light detector are transmissive while other portions of the test connector located near the interface are highly reflective.
Abstract:
Embodiments of the present invention generally relate to the field of fiber optic communication, and more specifically, to optical time domain reflectometer apparatuses used for testing the integrity of a communication channel. Due to its high bandwidth, low dispersion, low attenuation, and immunity to electromagnetic interference among other advantages single-mode and multimode optical fibers are the standard transmission media used for intermediate and long reach high-speed communication applications in data centers, enterprise networks, metropolitan area networks (MANs), and long haul systems. Optical channels often contain other passive elements such as optical connectors, adapters, patch cords, splitters, combiners, and filters.
Abstract:
Embodiments of the present invention generally relate to the field of optical fiber splicing, and more specifically to apparatuses and methods directed to evaluation of splice joints. In an embodiment, the present invention is an apparatus for evaluating the integrity of a mechanical splice joint comprising a light source, a circulator, a photo detector, and an analysis circuit, wherein the apparatus connects to a test connector and evaluates signals representative of light pulses passing through at least a portion of the test connector.
Abstract:
A method for compensating for both material or chromatic dispersion and modal dispersion effects in a multimode fiber transmission system is provided. The method includes, but is not limited to measuring a fiber-coupled spatial spectral distribution of the multimode fiber laser transmitter connected with a reference multimode fiber optical cable and determining the amount of chromatic dispersion and modal dispersion present in the reference multimode fiber optic cable. The method also includes, but is not limited to, designing an improved multimode fiber optic cable which compensates for at least a portion of the chromatic dispersion and modal dispersion present in the reference multimode fiber optic cable resulting from the transmitter's fiber-coupled spatial spectral distribution.