Abstract:
Systems, methods and computer software are disclosed for providing base station and Remote Radio Head (RRH) functionality. In one embodiment, a method is disclosed, the method for providing base station and Remote Radio Head (RRH) functionality in a base station, comprising: providing a baseband card; providing a radio head, the radio head coupled to the baseband card by way of an interface; and switching, under the control of a processor, between use of the baseband card and use of an external baseband unit for controlling the radio head, the external baseband unit used via a Common Public Radio Interface (CPRI) port, thereby providing dual base station and remote radio head functionality.
Abstract:
In this invention, we disclose methods directed toward integrating an ad hoc cellular network into a fixed cellular network. The methods disclosed herein automate the creation and integration of these networks. In additional embodiments, we disclose methods for establishing a stand-alone, ad hoc cellular network. In either of these implementations, we integrate or establish an ad hoc cellular network using mobile ad hoc cellular base stations configured to transmit and receive over a variety of frequencies, protocols, and duplexing schemes. The methods flexibly and dynamically choose an access or backhaul configuration and radio characteristics to optimize network performance. Additional embodiments provide for enhancing an existing network's coverage as needed, establishing a local network in the event of a loss of backhaul coverage to the core network, and providing local wireless access service within the ad hoc cellular network.
Abstract:
A method for scheduling resources in a network where the scheduling activity is split across two nodes in the network is disclosed, comprising: receiving, from a local scheduler in a first radio access network, access network information at a global scheduler; accessing information regarding a second radio access network allocating, at the global scheduler, resources for secondary allocation by the local scheduler; applying a hash function to map the allocated resources for secondary allocation to a set of hash values; and sending, from the global scheduler, the set of hash values to the local scheduler.
Abstract:
A method may be disclosed in accordance with some embodiments, comprising: receiving, at a virtualizing gateway between the eNodeB and a first core network, a service request from a first user equipment (UE) via an eNodeB; applying a filter to an identifier of the UE to authenticate the UE; and forwarding, based on the applied filter, the service request from the first UE to the first core network. The identifier may be an international mobile subscriber identity (IMSI). The filter may be a whitelist containing a plurality of IMSIs to be granted service or a blacklist containing a plurality of IMSIs to be denied service, the service request may be a Long Term Evolution (LTE) attach request, and the method may further comprise forwarding the message from the first UE to a first mobility management entity (MME) in the first core network.
Abstract:
Systems and methods are disclosed for performing computations on data at an intelligent data pipe en route to a data store. In one embodiment, a method is disclosed, comprising: receiving metadata regarding a data stream from a data source; performing an analysis of the metadata at a service orchestrator; creating at least one container instance based on the analysis; streaming the data stream from the data source to a data sink via the at least one container; and processing the data stream as it passes through the at least one container instance, thereby enabling application-aware processing of data streams in real time prior to arrival at the data store.
Abstract:
A gateway for X2 interface communication is disclosed, comprising: an X2 internal interface for communicating with, and coupled to, a first and a second radio access network (RAN); an X2 language processing module for receiving messages from the first RAN according to a first X2 protocol and mapping the received messages to a second X2 protocol for transmission to the second RAN; and an X2 external interface for communicating with, and coupled to, a gateway in a a wireless telecommunications core network. The gateway may further comprise a database for storing a plurality of rules for performing mapping at the X2 language processing module, and a state machine for maintaining state of one of the first RAN or the second RAN, and an interpreter for executing executable code received as part of the received messages and altering the state machine based on the executed executable code, and a regular expression pattern matcher for identifying patterns in the received messages that are present in the first X2 protocol but not present in the second X2 protocol.
Abstract translation:公开了一种用于X2接口通信的网关,包括:X2内部接口,用于与第一无线电接入网络(RAN)和第二无线电接入网络(RAN)进行通信并且与其耦合; X2语言处理模块,用于根据第一X2协议从第一RAN接收消息,并将接收到的消息映射到第二X2协议以传输到第二RAN; 以及X2外部接口,用于与无线电信核心网络中的网关进行通信并与其耦合。 网关还可以包括用于存储用于在X2语言处理模块处执行映射的多个规则的数据库,以及用于维护第一RAN或第二RAN中的一个的状态的状态机以及用于执行作为第一RAN或第二RAN接收的可执行代码的解释器 部分接收到的消息并基于执行的可执行代码改变状态机;以及正则表达式模式匹配器,用于识别出现在第一X2协议中但不存在于第二X2协议中的接收消息中的模式。 p >
Abstract:
Systems and methods are presented for using a mobile multi-radio access technology (multi-RAT) device for locating an individual, for example, in a search-and-rescue application. The multi-RAT device may permit the individual's cell phone to attach to the mobile multi-RAT device, and then may use a directional antenna to locate the individual. Various embodiments of such a device are described.
Abstract:
In this invention, we disclose methods for enabling ad hoc cellular base station functionality within a user equipment when the connection quality between a base station and the user equipment is limited or nonexistent. These methods include measuring a connection quality between a user equipment and its serving base station. If the connection quality is below a threshold, the user equipment can enable its internal ad hoc cellular base station functionality. This is done by running a software within the user equipment that (a) checks the connection quality periodically, and (b) enables ad hoc cellular base station functionality of the connection threshold dips below a certain value. In one embodiment, that threshold could be the same threshold value that a user equipment would use if it were making a decision to handoff to another base station based on poor connection quality.
Abstract:
A method for scheduling resources in a network where the scheduling activity is split across two nodes in the network is disclosed, comprising: receiving, from a local scheduler in a first radio access network, access network information at a global scheduler; accessing information regarding a second radio access network allocating, at the global scheduler, resources for secondary allocation by the local scheduler; applying a hash function to map the allocated resources for secondary allocation to a set of hash values; and sending, from the global scheduler, the set of hash values to the local scheduler.